Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
S = 1.2 + 2.3 + 3.4 + ... + 99.100
=> 3S = 1.2.3 + 2.3.3 + 3.4.3 + ... + 99.100.3
=> 3S = 1.2.(3 - 0) + 2.3.(4 - 1) + 3.4.(5 - 2) + ... + 99.100.(101 - 98)
=> 3S = 1.2.3 - 0 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + ... + 99.100.101 - 98.99.100
=> 3S = 99.100.101
=> S = \(\frac{99.100.101}{3}=333300\)
S=1.2+2.3+3.4+...+99.100
3S=1.2.3+2.3.(4-1)+3.4.(5-2)+...+99.100.(101-98)
3S=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+99.100.101-98.99.100
3S=99.100.101
S=(99.100.101):3=333300
S=99.100.101/3=333300
Ta có công thức:
1.2+2.3+3.4+...+n(n+1)=n(n+1)(n+2)/3
S=1.2+ 2.3+4,5.......+99.100
Nhân cả 2 vế với 3, ta được:
3S=1.2.3+ 2.3.3+ 3.4.3+ 4.5.3+...... 99.100.3
= 1.2.3 + 2.3(4-1) + 3.4.(5-2) +...+ 99.100.(101-98)
= 1.2.3 + 2.3.4 -1.2.3 + 3.4.5-2.3.4 +...+ 99.100.101-98.99.100
= 99.100.101
----> S = (99.100.101):3
S= 333300
Vậy A=333300
S = 1.2 + 2.3 + 3.4 + ... + 99.100
3S = 1.2.(3-0) + 2.3.(4-1) + 3.4.(5-2) + ... + 99.100.(101-98)
3S = 1.2.3 - 0.1.2 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + ... + 99.100.101 - 98.99.100
3S = 99.100.101
S = 33.100.101
S = 333 300
Ủng hộ mk nha ^_-
Ta có: S = 1.2 + 2.3 + 3.4 + ... + 99.100
=> 3S = 1.2.(3-0) + 2.3.(4-1) + 3.4.(5-2) + ... + 99.100.(101-98)
=> 3S = 1.2.3 - 1.2.3 + 2.3.4 - 2.3.4 + ... - 99.100.101 + 98.99.100
=> 3S = 98.99.100
=> S = \(\frac{98.99.100}{3}=333300\)
A . 3 = 1.2.3 + 2.3.3 + 3.4.3 + … + 99.100.3
A . 3 = 1.2.3 + 2.3.(4 - 1) + 3.4.( 5 - 2) + … + 99.100. (101 - 98)
A . 3 = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + … + 99.100.101 - 98.99.100
A . 3 = 99.100.101
A = 99.100.101 : 3
A = 33.100.101
A = 333 300
S = 1.2 + 2.3 + 3.4 + ..... + 99. 100
=> 3.S = 1.2.3+2.3.3+3.4.3+......+99.100.3
=> 3.S = 1.2.( 3 - 0) + 2 . 3 . ( 4 - 1 ) + 3. 4 . ( 5 - 2 ) + ..... + 99 . 100 . ( 101 - 98 )
=> 3 . S = ( 1.2 . 3 - 1 . 2 . 0 ) + ( 2 . 3 . 4 - 2 . 3 . 1 ) + ...... + ( 99. 100 . 101 - 98 . 99 . 100 )
=> 3.S = 99 . 100 . 101 - 1 . 2 .0
=> 3.S = 999 900 - 0
=> 3 . S = 999 900
=> S = 333 300
Vậy: S = 333 300
S = 1.2 + 2.3 + 3.4 + ....+ 99.100
3S = 1.2.3 + 2.3.(4-1) +....+ 99.100.(101-98)
3S = 1.2.3 + 2.3.4 - 1.2.3 + ..... + 99.100.101-98.99.100
3S= 99.100.101 = 999900
S = 999900 : 3 = 333300
S = 1.2 + 2.3 + 3.4 +...+ 99.100
3S = 1.2.3 + 2.3.(4 - 1) + 3.4.(5 - 2) +...+ 99.100.(101 - 98)
3S = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 +...+ 99.100.101 - 98.99.100
3S = 99.100.101
3S = 999900
S = 333300
S= 1.2 + 2.3 + 3.4 + ...+ 99.100
|
S = (99x100x101 - 0x1x2):3 = 333300
các bạn cho mình vài li-ke cho tròn 550 với
(Bài toán 1:Cho A =1.2+2.3+3.4+…+97.98+98.99+99.100. Tính giá trị của A
Lời giải 1:Theo đề bài ta có:
A.3=(1.2+2.3+3.4+…+97.98+98.99+99.100).3 =1.2(3-0)+2.3(4-1)+3.4(5-2)+ …+98.99(100-97)+99.100(101-97) =1.2.3-1.2.3+2.3.4-2.3.4+3.4.5-3.4.5+4.5.6-4.5.6-…-97.98.99+98.99.100-98.99.100-99.100.101=99.100.101.
Vậy A = 333300
Bây giờ ta tạm thời quên đi đáp số 333300 mà chỉ chú ý tới tích cuối cùng 99.100.101 trong đó 99.100 là số hạng cuối cùng của A và 101là số tự nhiên kề sau của 100 , tạo thành tích ba số tự nhiên liên tiếp. Ta dễ dàng nghĩ tới kết quả sau:
1.2+2.3+3.4+4.5+5.6 +…+n(n+1)=
Các bạn có thể tự kiểm nghiệm kết quả này bằng cách giải tuơng tự như trên.
Bây giờ ta tìm lời giải khác cho bài toán .
3S=1.2.3+2.3.3+3.4.3+...+99.100.3
3S=1.2.3+2.3.(4-1)+3.4.(5-2)+...+99.100.(101-98)
3S= 1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+... 99.100.101-98.99.100
3S= 99.100.101
S= 99.100.101/3
S=333300
Ai t ick tui tui t ick lại