K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
25 tháng 6 2024

Lời giải:

$S=1+4+(4^2+4^3+4^4)+(4^5+4^6+4^7)+....+(4^{98}+4^{99}+4^{100})$

$=5+4^2(1+4+4^2)+4^5(1+4+4^2)+...+4^{98}(1+4+4^2)$

$=5+(1+4+4^2)(4^2+4^5+....+4^{98})$

$=5+21(4^2+4^5+...+4^{98})$

$\Rightarrow S$ chia $21$ dư $5$

12 tháng 1 2019

ko biết

AH
Akai Haruma
Giáo viên
30 tháng 6 2024

Bài 1:

Theo đề ra ta có:

$a-2\vdots 3; a-3\vdots 5$

$a-2-2.3\vdots 3; a-3-5\vdots 5$

$\Rightarrow a-8\vdots 3; a-8\vdots 5$

$\Rightarrow a-8=BC(3,5)$

$\Rightarrow a-8\vdots 15$

$\Rightarrow a=15k+8$ với $k$ tự nhiên.

Mà $a$ chia 11 dư 6

$\Rightarrow a-6\vdots 11$

$\Rightarrow 15k+8-6\vdots 11$

$\Rightarrow 15k+2\vdots 11\Rightarrow 4k+2\vdots 11$

$\Rightarrow 4k+2-22\vdots 11\Rightarrow 4k-20\vdots 11$

$\Rightarrow 4(k-5)\vdots 11\Rightarrow k-5\vdots 11$

$\Rightarrow k=11m+5$

Vậy $a=15k+8=15(11m+5)+8=165m+83$ với $m$ tự nhiên.

Vì $a<500\Rightarrow 165m+83<500\Rightarrow m< 2,52$

$\Rightarrow m=0,1,2$

Nếu $m=0$ thì $a=165.0+83=83$

Nếu $m=1$ thì $a=165.1+83=248$

Nếu $m=2$ thì $a=165.2+83=413$

 

AH
Akai Haruma
Giáo viên
30 tháng 6 2024

Bài 2:

$a=BC(60,85,90)$
$\Rightarrow a\vdots BCNN(60,85,90)$

$\Rightarrow a\vdots 3060$

Mà $a<1000$ nên $a=0$

20 tháng 10 2016

S=\(\frac{4^{39}-1}{3}\)

b)lấy 4^39 -1 chia cho 15

\(4^{10}\)đồng dư vs 1 theo mod 15

4^30 đồng dư với 1 theo mod 15

4^39 đồng sư với  4 theo mod 15

4^39-1 đồng dư với 3 theo mod 15

\(\Rightarrow\)4^39-1=15k+3

S=\(\frac{4^{39}-1}{3}=\frac{15k+3}{3}=5k+1\)

c)5:21 dư 5

24 tháng 8 2017

1.S=(1+4+4^2)+(4^3+4^4+4^5)+...+(4^96+4^97+4^98)+4^99

   S=1x(1+4+16)+4^3x(1+4+16)+...+4^96x(1+4+16)+4^99

   S=1x21+4^3x21+...+4^96x21+4^99

   S=21x(1+4^3+...+4^96)+4^99