K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 8 2017

\(S=5+5^2+5^3+.............+5^{2004}\)

\(\Leftrightarrow S=\left(5+5^4\right)+\left(5^2+5^5\right)+..........+\left(5^{2001}+5^{2004}\right)\) (\(1007\) nhóm)

\(\Leftrightarrow S=5\left(1+5^3\right)+5^2\left(1+5^3\right)+..........+5^{2001}\left(1+5^3\right)\)

\(\Leftrightarrow S=5.126+5^2.126+............+5^{2001}.126\)

\(\Leftrightarrow S=126\left(5+5^2+...........+5^{2001}\right)⋮126\)

\(\Leftrightarrow S⋮126\rightarrowđpcm\)

8 tháng 8 2017

\(S=5+5^2+5^3+5^4+...+5^{2004}\\ =\left(5+5^3\right)+\left(5^2+5^4\right)+...+\left(5^{2001}+5^{2003}\right)+\left(5^{2002}+5^{2004}\right)\\ =5\cdot\left(1+5^2\right)+5^2\cdot\left(1+5^2\right)+...+5^{2001}\cdot\left(1+5^2\right)+5^{2002}\cdot\left(1+5^2\right)\\ =\left(1+5^2\right)\cdot\left(5+5^2+...+5^{2001}+5^{2002}\right)\\ =26\cdot\left(5+5^2+...+5^{2001}+5^{2002}\right)⋮26\)

Vậy \(S⋮26\)

NV
23 tháng 3 2019

Lấy logarit cơ số 4 hai vế:

\(log_44^{log_57}=log_47^{log_54}\)

\(\Leftrightarrow log_57=log_54.log_47\)

\(\Leftrightarrow log_57=\frac{log_47}{log_45}\)

\(\Leftrightarrow log_57=log_57\)

Đẳng thức cuối cùng đúng, vậy ta có đpcm

22 tháng 11 2016

bạn đùa à? @@

\(2^4-4^2=16-16=0\)

6 tháng 12 2016

biết làm rồi

18 tháng 11 2017

a. 32x - 5.(3.2)x + 22x.4 =0

(=) \(\left(\dfrac{3}{2}\right)^{^{2x}}-5.\left(\dfrac{3}{2}\right)^x+2^{2x}.4\) =0

đặt \(\left(\dfrac{3}{2}\right)^x=t\) đk: t > 0

=> pttt: t2 - 5t +4 =0

(=)\(\left[{}\begin{matrix}t=1\\t=4\end{matrix}\right.\)

(=) \(\left[{}\begin{matrix}\left(\dfrac{3}{2}\right)^x=1\\\left(\dfrac{3}{2}\right)^x=4\end{matrix}\right.\)

(=)\(\left[{}\begin{matrix}x=0\\x=\log_{\dfrac{3}{2}}4\end{matrix}\right.\)

18 tháng 11 2017

b. 3.52x + 2.72x - 5.(5.7)x =0

(=) \(3+2.\left(\dfrac{7}{5}\right)^{2x}-5.\left(\dfrac{7}{5}\right)^x=0\)

đặt \(t=\left(\dfrac{7}{5}\right)^x\) đk: t > 0

pttt: 3+2t2-5t=0

(=) \(\left[{}\begin{matrix}t=1\\t=\dfrac{3}{2}\end{matrix}\right.\)

(=)\(\left[{}\begin{matrix}x=0\\x=\log_{\dfrac{7}{5}}\dfrac{3}{2}\end{matrix}\right.\)