Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) M = 1 + 3 + 32 + ... + 3119
=> 3M = 3 + 32 + ... + 3120
=> 3M - M = 3 + 32 + ... + 3120 - ( 1 + 3 + 32 + ... + 3119)
=> 2M = 3 + 32 + ... + 3120 - 1 - 3 - 32 - 3119
=> 2M = 3120 - 1
=> M = \(\frac{3^{120}-1}{2}\)
b) M = 1 + 3 + 32 + ... + 3119
=> M = (1+3+32+33)+...+(3116+3117+3118+3119)
=> M = 40 + ... + 3116.(1+3+32+33)
=> M = 40 + ... + 3116.40
=> M = 40.(1+...+3116) \(⋮\)5 => M \(⋮\)5.
M = 1 + 3 + 32 + ... + 3119
=> M = (1+3+32) + ... + (3117+3118+3119)
=> M = (1+3+32) + ... + 3117.(1+3+32)
=> M = 13 + ... + 3117.13
=> M = 13.(1+...+3117) \(⋮\)13 => M \(⋮\)13
3M=3+32+33+34+...+3119+3120
3M-M=(3+32+33+34+...+3119+3120)-(1+3+32+33+...+3118+3119)
2M=3120-1=>M=(3120-1):2
a) M = 1 +3 +32 +33 + ....+ 3118 +3119
3M= 3 +32 +33 + ....+ 3119 +3120
3M-M= (3 +32 +33 + ....+ 3119 +3120)-(1 +3 +32 +33 + ....+ 3118 +3119)
2M= 3120-1
M= \(\frac{3^{120}-1}{2}\)
b) M=1 +3 +32 +33 + ....+ 3118 +3119
= (1 +3 +32 +33 )+(34+35+36+37)+....+ (3117+3118 +3119)
= 40+34.(1 +3 +32 +33 )+38.(1 +3 +32 +33 )+....+3117.(1 +3 +32 +33 )
= 40+34.40+38.40+....+3117.40
= 40.(1+34+38+....+3117)
vì 40 chia hết cho 5
=> M chia hết cho 5.
M=1 +3 +32 +33 + ....+ 3118 +3119
= (1+3+32)+(33+34+35)+....+(3117+3118+3119)
= 13+33.13+36+....+3117.13
= 13.(1+33+36+....+3117)
Vì 13 chia hết cho 13
=> M chia hết cho 13.
a) Ta có : S = 4 + 42 + 43 + ... + 490
=> 4S = 42 + 43 + 44 + ... + 491
=> 4S - S = (42 + 43 + 44 + ... + 491) - (4 + 42 + 43 + ... + 490)
=> 3S = 491 - 4
=> S = \(\frac{4^{91}-4}{3}\)
b) Khi đó 3S + 4 = 4x + 10
<=> 491 - 4 + 4 = 4x + 10
=> 4x + 10 491
=> x + 10 = 91
=> x = 81
Vậy x = 81
S = 4 + 42 + 43 + ... + 490
Chứng minh chia hết cho 5
S = ( 4 + 42 ) + ( 43 + 44 ) + ... + ( 489 + 490 )
= 4( 1 + 4 ) + 43( 1 + 4 ) + ... + 489( 1 + 4 )
= 4.5 + 43.5 + ... + 489.5
= 5( 4 + 43 + ... + 489 ) chia hết cho 5 ( đpcm )
Chứng minh chia hết cho 21
S = ( 4 + 42 + 43 ) + ( 44 + 45 + 46 ) + ... + ( 488 + 489 + 490 )
= 4( 1 + 4 + 42 ) + 44( 1 + 4 + 42 ) + ... + 488( 1 + 4 + 42 )
= 4.21 + 44.21 + ... + 488.21
= 21( 4 + 44 + ... + 488 ) chia hết cho 21 ( đpcm )
Tính S
S = 4 + 42 + 43 + ... + 490
4S = 4( 4 + 42 + 43 + ... + 490 )
= 42 + 43 + 44 + ... + 491
4S - S = 3S
= ( 42 + 43 + 44 + ... + 491 ) - ( 4 + 42 + 43 + ... + 490 )
= 42 + 43 + 44 + ... + 491 - 4 - 42 - 43 - ... - 490
= 491 - 4
\(3S=4^{91}-4\Rightarrow S=\frac{4^{91}-4}{3}\)
Tìm x
3S + 4 = 4x+10 ( 3S mới tính được bạn nhé '-' )
<=> 491 - 4 + 4 = 4x+10
<=> 491 = 4x+10
<=> 91 = x + 10
<=> x = 81
Câu 1: Dân số thế giới tăng nhanh trong khoảng thời gian nào?
a. Trước Công nguyên b. Từ Công Nguyên- thế kỉ XI
c. Từ thế kỉ XIX- thế kỉ XX d. Từ thế kỉ XIX- nay
Chọn C
Câu 2: Những năm 50 của thế kỉ XX bùng nổ dân số diễn ra ở
a. Châu Âu, Á, Đại dương b. Châu Á,Phi và Mĩ La Tinh
c. Châu Mĩ, Đại dương, Phi. d. Châu Mĩ La Tinh, Á, Âu
Chọn B
S=21 + 22 + 23 ..... + 2100
=(21+22)+...+(299+2100)
=2(1+2)+...+299(1+2)
=2*3+...+299*3
=3*(2+...+299) chia hết 3
Đpcm
bài này dễ mà : hướng dẫn cách làm :
ghép hai số một cặp
đặt các số ra ngoài sao cho trong ngoặc còn 1+2
S=(1+3)+(3^2+3^3)+...+(3^99+3^100)
= 4+3^2.(1+3)+...+3^99.(1+3)
= 4 + 3^2.4+..+3^99.4
= 4.(1+3^2+...+3^99) chia hết cho 4
S=(1+3+3^2)+...+(3^98+3^99+3^100)
= 13+ ...+3^98.(1+3+3^2)
= 13+...+3^98.13
= 13.(1+...+3^98) chia hết cho 13