K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 10 2016

S=2+ 2+ 2..... + 2100

=(21+22)+...+(299+2100)

=2(1+2)+...+299(1+2)

=2*3+...+299*3

=3*(2+...+299) chia hết 3

 Đpcm

1 tháng 10 2016

bài này dễ mà : hướng dẫn cách làm :

ghép hai số một cặp

đặt các số ra ngoài sao cho trong ngoặc còn 1+2

18 tháng 7 2017

a ) \(5^{61}+25^{31}+125^{21}=5^{61}+5^{62}+5^{63}=5^{61}\left(1+5+25\right)=5^{61}.31⋮31\)(đpcm)

b ) \(6^3+2.6^2+3^3=2^3.3^3+2^3.3^2+3^3=3^2\left(8.3+8+3\right)=3^2.35⋮35\) (đpcm)

Vậy ........

18 tháng 7 2017

Cảm ơn các bạn nhiều lắm nha!!!

14 tháng 7 2017

2100 + 2101 + 2102

= 299[2 + 22 + 23]

= 299.[2+4+8]

= 299.14

= 299.2.7

= 2100.7 chia hết cho 7

Vậy:...........

4 tháng 9 2017

1a, Ta có : 2S=2+2^2+2^3+...+2^51

=>2S- S=(2+2^2+2^3+...+2^51)-(1+2+2^2+...+2^50)

=> S = 2^51-1

Vậy S < 2^51

1,b 24^54.54^24.2^10 chia hết 72^63 

24^54.54^24.2^10=(2^3.3)^54.(3^3.2)^24... 

=(2^3)^54.3^54.(3^3)^24.2^24.2^10 

= 2^162.2^24.2^10.3^54.3^72 

=2^196.3^126 

72^63=(2^3.3^2)^63 

=(2^3)^63(.3^2)^63=2^189.3^126 

vì 2^196.3^126 chia hết 2^189.3^126 

=>24^54.54^24.2^10 chia hết 72^63 

Đăt S = 3^(n+2)-2^(n+2)+3^n-2^n

= 3^(n+2) + 3^n - [2^(n+2) + 2^n] 


Ta có 3^(n+2) + 3^n = 9.3^n + 3^n = 10.3^n (chia hết cho 10)

 
Và 2^(n+2) + 2^n = 4.2^n + 2^n = 5.2^n (chia hết cho 10, vì chia hết cho 2 và 5) 

Suy ra S chia hết cho 10.

2 Ta có M =|x-2002|+|x-2001| => M ≥ | x-2002+x-2001|

=> M ≥ | 2x-4003 | va | 2x-4003 | ≥ 0

Có 2 truong hop 2x ≤ 4003 va 2x ≥ 4003

Th1 : 2x ≤ 4003

=> M ≥ 4003-2x ≥ 0

Để m nho nhat thi 2x phai lon nhat 

=> 2x=4003=>x=\(\frac{4003}{2}\)

M ≥ 4003-4003=0                  

Th2 2x ≥ 4003

M ≥ 2x-4003 ≥0

Để M nho nhat thi 2x phai nho nhat

=> 2x=4003=>x=4003/2

M ≥ 4003 -4003=0

Tu 2 truong hop tren ta co GTNN cua M la 0

Xay ra khi x=4003/2

4 tháng 9 2017

Để M đạt GTNN thì:

|x-2002|+|x-2001|> hoặc = 0

Vì |x-2002|> hoặc = 0

|x-2001|> hoặc = 0

Nếu |x-2002|=0

=>x-2002=0

x=2002+0

x=2002

Thay x=2002 ta có:

|2002-2002|+|2002-2001|

=|0|+|1|

=0+1

=1

=> GTNN của M=1

19 tháng 7 2017

3n + 3 + 3n + 1 + 2n + 3 + 2n + 2

= 3n.33 + 3n.3 + 2n.23 + 2n.22

= 3n.(27 + 3) + 2n.(8 + 4)

= 3n.30 + 2n.12

= 3n.5.6 + 2n.2.6

= 6.(3n.5 + 2n.2)  \(⋮\)  6

19 tháng 7 2017

Cảm ơn bạn kayasari nhiều nha !

12 tháng 11 2018

Ta có :

\(3^1+3^2+3^3+3^4+...+3^{99}+3^{100}\)

\(=(3^1+3^2)+(3^3+3^4)+...+(3^{99}+3^{100})\)

\(=3(1+3)+3^3(1+3)+...+3^{99}(1+3)\)

\(=3.4+3^3.4+...+3^{99}.4\)

\(=4.(3+3^3+...+3^{99})\)chia hết cho 4 

12 tháng 11 2018

\(3+3^2+3^3+3^4+...+3^{99}+3^{100}.\)

\(=3\left(1+3\right)+3^2\left(1+3\right)+...+3^{99}\left(1+3\right)\)

\(=4\left(3+3^2+...+3^{99}\right)⋮4\)

31 tháng 3 2019

\(S=17+17^2+17^3+...+17^{18}\)

\(S=\left(17+17^2+17^3\right)+...+\left(17^{16}+17^{17}+17^{18}\right)\)

\(S=17\left(1+17+17^2\right)+...+17^{16}\left(1+17+17^2\right)\)

\(S=17.307+...+17^{16}.307\)

\(S=307\left(17+17^4+...+17^{16}\right)\text{ ⋮ }307\)

27 tháng 6 2016

a) \(3^{n+2}+3^n-2^{n+2}-2^n\)

\(=3^n\left(3^2+1\right)-2^n\left(2^2+1\right)\)

\(=3^n.10-2^n.5\)

\(=3^n.10-2^{n-1}.2.5\)chia hết cho 10

b)\(3^{n+3}+3^{n+1}+2^{n+3}+2^{n+2}\)

\(=3^{n+1}\left(3^2+1\right)+2^{n+2}\left(2+1\right)\)

\(=3^{n+1}.10+2^{n+2}.3\)

\(=3^n.3.2.5+2^{n+1}.2.3\)chia hết cho 6

27 tháng 6 2016

mình k cho bạn rùi đấy Thảo Lê Thị

A=2+22+23+....+299+2100

A=(2+22+23+24+25)+(26+27+28+29+210)+......+(296+297+298+299+2100)

A=(2+22+23+24+25)+25.(2+22+23+24+25)+....+295.(2+22+23+24+25)

A=62+25.62+.....+295.62

A=62.(1+25+.....+295)

A=31.2.(1+25+...+295)\(⋮\)31

Vậy A\(⋮\)31

Chúc bn học tốt

15 tháng 1 2020

A=2+2^2+2^3+...+2^100

  =(2+2^2+2^3+2^4+2^5)+(2^6+2^7+2^8+2^9+2^10)+....+(2^96+2^97+2^98+2^99+2^100)

=62+2^5(2+2^2+2^3+2^4+2^5)+....+2^95(2+2^2+2^3+2^4+2^5)

=62+2^5.62+2^10.62+....+2^95.62

=62(1+2^5+2^10+...+2^95)

Vì 62 chia hết cho 31 => A chia hết cho 31