Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=\frac{2013^{2014}-2013^{2013}}{2013^{2013}-2013^{2012}}\)
\(=\frac{2013^{2013}\cdot\left(2013-1\right)}{2013^{2012}\cdot\left(2013\right)-1}\)
\(=\frac{2013^{2013}}{2013^{2012}}=2013\)
Ta thấy B=2012+2013/2013+2014<1(vì 2012+2013<2013+2014)
Ta có A=2012/2013+2013/2014
A=1-1/2013+1-1/2014
A=(1+1)-(1/2013+1/2014)
A=2-(1/2013+1/2014)
Mà 1/2013<1/2;1/2014<1/2
=>1/2013+1/2014<1/2+1/2=1
=>2-(1/2013+1/2014)>1
=>A>1
Mà B<1
=>A>B
\(B=\frac{2012+2013}{2013+2014}=\frac{2012}{2013+2014}+\frac{2013}{2013+2014}< \frac{2012}{2013}+\frac{2013}{2014}=A\)
Vậy B<A
Đặt B = 2013^2013+1/2013^2014+1
Ta có: \(B=\frac{2013^{2013}+1}{2013^{2014}+1}< \frac{2013^{2013}+1+2012}{2013^{2014}+1+2012}=\frac{2013^{2013}+2013}{2013^{2014}+2013}=\frac{2013\left(2013^{2012}+1\right)}{2013\left(2013^{2013}+1\right)}=\frac{2013^{2012}+1}{2013^{2013}+1}=A\)
Vậy A > B
\(P=\frac{2013^{2014}-2013^{2013}}{2013^{2013}-2013^{2012}}=\frac{2013}{1}=2013\)
P = 20132014-20132013/20132013-20132012
= 20132014 - 1 - 20132012
= 20132014 - 20132012 -1
= 2013(2014-2012) - 1
= 20132 -1
= 4052169 -1
= 4052168