Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: =>-4x>16
=>x<-4
c: =>20x-25<=21-3x
=>23x<=46
=>x<=2
d: =>20(2x-5)-30(3x-1)<12(3-x)-15(2x-1)
=>40x-100-90x+30<36-12x-30x+15
=>-50x-70<-42x+51
=>-8x<121
=>x>-121/8
\(a,\frac{4x^3}{10x^2y}=\frac{2x}{5y}\)
\(b,\frac{10xy^5\left(2x-3y\right)}{12xy\left(2x-3y\right)}=\frac{5y^4}{6}\)
Hok Tốt~~
\(\frac{4x^3}{10x^2y}=\frac{2x}{5y}\)
\(\frac{10xy^5\left(2x-3y\right)}{12xy\left(2x-3y\right)}=\frac{5y^4}{4}\)
Tham khảo nhé~
a) \(ĐKXĐ:\hept{\begin{cases}x\ne\pm2\\x\ne-3\end{cases}}\)
b) \(P=1+\frac{x+3}{x^2+5x+6}\div\left(\frac{8x^2}{4x^3-8x^2}-\frac{3x}{3x^2-12}-\frac{1}{x+2}\right)\)
\(\Leftrightarrow P=1+\frac{x+3}{\left(x+3\right)\left(x+2\right)}:\left(\frac{8x^2}{4x^2\left(x-2\right)}-\frac{3x}{3\left(x^2-4\right)}-\frac{1}{x+2}\right)\)
\(\Leftrightarrow P=1+\frac{1}{x+2}:\left(\frac{2}{x-2}-\frac{x}{\left(x-2\right)\left(x+2\right)}-\frac{1}{x+2}\right)\)
\(\Leftrightarrow P=1+\frac{1}{x+2}:\frac{2x+4-x-x+2}{\left(x-2\right)\left(x+2\right)}\)
\(\Leftrightarrow P=1+\frac{1}{x+2}:\frac{6}{\left(x-2\right)\left(x+2\right)}\)
\(\Leftrightarrow P=1+\frac{\left(x-2\right)\left(x+2\right)}{6\left(x+2\right)}\)
\(\Leftrightarrow P=1+\frac{x-2}{6}\)
\(\Leftrightarrow P=\frac{x+4}{6}\)
c) Để P = 0
\(\Leftrightarrow\frac{x+4}{6}=0\)
\(\Leftrightarrow x+4=0\)
\(\Leftrightarrow x=-4\)
Để P = 1
\(\Leftrightarrow\frac{x+4}{6}=1\)
\(\Leftrightarrow x+4=6\)
\(\Leftrightarrow x=2\)
d) Để P > 0
\(\Leftrightarrow\frac{x+4}{6}>0\)
\(\Leftrightarrow x+4>0\)(Vì 6>0)
\(\Leftrightarrow x>-4\)
1.
x(x+1)(x2+x+3) = (x2+x)(x2+x+3)
đặt x2+x = t
=> t(t+3)=4
=>t;t+3 thuộc Ư(4)
=> t;t+3 thuộc -1;1-2;2-4;4
tự xét lần lượt các TH nha bạn
a: \(=\dfrac{x^4+15x+7}{x^4+15x+7}\cdot\dfrac{x}{14x^2+1}\cdot\dfrac{4x^3+4}{2x^3+2}=\dfrac{2x}{14x^2+1}\)
b: \(=\dfrac{x^7+3x^2+2}{x^7+3x^2+2}\cdot\dfrac{x^2+x+1}{x^3-1}\cdot\dfrac{3x}{x+1}\)
\(=\dfrac{1}{x-1}\cdot\dfrac{3x}{x+1}=\dfrac{3x}{x^2-1}\)
\(a)\frac{2x^3-7x^2-12x+45}{3x^3-19x^2+33x-9}=\frac{(x-3)^2(2x+5)}{(3x-1)(x-3)^2}(ĐK:x\ne3,x\ne\frac{1}{3})\)
\(=\frac{2x+5}{3x-1}\)
Còn bài b bạn tự làm nhé
Điều kiện: \(x\ne\left\{-1;-2;-5\right\}\)
\(\frac{x^3+x^2-4x-4}{x^3+8x^2+17x+10}=\frac{x^2\left(x+1\right)-4\left(x+1\right)}{x^2\left(x+1\right)+7x\left(x+1\right)+10\left(x+1\right)}\)
\(=\frac{\left(x+1\right)\left(x^2-4\right)}{\left(x+1\right)\left(x^2+7x+10\right)}\)
\(=\frac{\left(x+1\right)\left(x-2\right)\left(x+2\right)}{\left(x+1\right)\left[x\left(x+2\right)+5\left(x+2\right)\right]}\)
\(=\frac{\left(x+1\right)\left(x-2\right)\left(x+2\right)}{\left(x+1\right)\left(x+2\right)\left(x+5\right)}=\frac{x-2}{x+5}\)
Điều kiện: \(x\ne\left\{3;\frac{1}{3}\right\}\)
\(\frac{2x^3-7x^2-12x+45}{3x^3-19x^2+33x-9}=\frac{2x^3-6x^2-x^2+3x-15x+45}{3x^3-9x^2-10x^2+30x+3x-9}\)
\(=\frac{2x^2\left(x-3\right)-x\left(x-3\right)-15\left(x-3\right)}{3x^2\left(x-3\right)-10x\left(x-3\right)+3\left(x-3\right)}\)
\(=\frac{\left(x-3\right)\left(2x^2-x-15\right)}{\left(x-3\right)\left(3x^2-10x+3\right)}\)
\(=\frac{2x^2-x-15}{3x^2-10x+3}=\frac{2x\left(x-3\right)+5\left(x-3\right)}{3x\left(x-3\right)-\left(x-3\right)}\)
\(=\frac{\left(2x+5\right)\left(x-3\right)}{\left(3x-1\right)\left(x-3\right)}=\frac{2x+5}{3x-1}\)
Lời giải:
a) ĐKXĐ:
\(\left\{\begin{matrix} 2-x\neq 0\\ x^2-4\neq 0\\ 2+x\neq 0\\ x^2-3x\neq 0\\ 2x^2-x^3\neq 0\end{matrix}\right.\) \(\Leftrightarrow \left\{\begin{matrix} x\neq 2\\ x\neq -2\\ x\neq 3\\ x\neq 0\end{matrix}\right.\)
Rút gọn:
\(P=\left ( \frac{2+x}{2-x}+\frac{4x^2}{x^2-4}-\frac{2-x}{2+x} \right ):\frac{x^2-3x}{2x^2-x^3}\)
\(P=\left ( \frac{(2+x)^2}{4-x^2}-\frac{4x^2}{4-x^2}-\frac{(2-x)^2}{4-x^2} \right ):\frac{x-3}{x(2-x)}\)
\(P=\frac{(x+2)^2-4x^2-(2-x)^2}{4-x^2}.\frac{x(2-x)}{x-3}\)
\(=\frac{4x(2-x)}{4-x^2}.\frac{x(2-x)}{x-3}=\frac{4x^2(2-x)}{(x+2)(x-3)}\)
b) Có: \(|x-5|=2\Leftrightarrow \) \(\left[{}\begin{matrix}x-5=2\\x-5=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=7\\x=3\end{matrix}\right.\)
TH $x=3$ loại do không thỏa mãn ĐKXĐ
\(x=7\Rightarrow P=\frac{-245}{9}\)
d) Để P<0 thì \(\frac{4x^2(2-x)}{(x+2)(x-3)}< 0\)
\(\Leftrightarrow \frac{2-x}{(x+2)(x-3)}< 0\) (do \(4x^2>0\) )
Khi đó xảy ra các TH:
1. \(\left\{\begin{matrix} 2-x> 0\\ (x+2)(x-3)< 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x< 2\\ -2< x< 3\end{matrix}\right.\)
\(\Leftrightarrow -2< x< 2\) kêt hợp với \(x\neq 0\)
2. \(\left\{\begin{matrix} 2-x< 0\\ (x+2)(x-3)> 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x>2\\ x< -2 \text{or}x>3\end{matrix}\right.\)
\(\Leftrightarrow x>3\)
TH1: x>=5/3
A=3x-5+4x-6=7x-11
TH2: 3/5<x<5/3
A=5-3x+4x-6=x-1