Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: =>-4x>16
=>x<-4
c: =>20x-25<=21-3x
=>23x<=46
=>x<=2
d: =>20(2x-5)-30(3x-1)<12(3-x)-15(2x-1)
=>40x-100-90x+30<36-12x-30x+15
=>-50x-70<-42x+51
=>-8x<121
=>x>-121/8
Lời giải:
a)
\(\frac{x-2}{6x^2-6x}-\frac{1}{4x^2-4}=\frac{x-2}{6x(x-1)}-\frac{1}{4(x^2-1)}=\frac{x-2}{6x(x-1)}-\frac{1}{4(x-1)(x+1)}\)
\(=\frac{2(x+1)(x-2)}{12x(x-1)(x+1)}-\frac{3x}{12x(x-1)(x+1)}=\frac{2(x+1)(x-2)-3x}{12x(x-1)(x+1)}\)
\(=\frac{2x^2-5x-4}{12x(x-1)(x+1)}=\frac{2x^2-5x-4}{12x^3-12x}\)
b) ĐK: \(x\neq \pm 1\)
\(\frac{(x+1)(x^2-2x+1)}{6x^3+6}:\frac{x^2-1}{4x^2-4x+4}\)
\(=\frac{(x+1)(x-1)^2}{6(x^3+1)}.\frac{4x^2-4x+4}{x^2-1}\)
\(=\frac{4(x+1)(x-1)^2(x^2-x+1)}{6(x+1)(x^2-x+1)(x^2-1)}\)
\(=\frac{2(x-1)}{3(x+1)}\)
a) \(\dfrac{3}{2x+6}-\dfrac{x-6}{2x^2+6x}\)
\(=\dfrac{3}{2\left(x+3\right)}-\dfrac{x-6}{2x\left(x+3\right)}\) MTC: \(2x\left(x+3\right)\)
\(=\dfrac{3x}{2x\left(x+3\right)}-\dfrac{x-6}{2x\left(x+3\right)}\)
\(=\dfrac{3x-\left(x-6\right)}{2x\left(x+3\right)}\)
\(=\dfrac{3x-x+6}{2x\left(x+3\right)}\)
\(=\dfrac{2x+6}{2x\left(x+3\right)}\)
\(=\dfrac{2\left(x+3\right)}{2x\left(x+3\right)}\)
\(=\dfrac{1}{x}\)
b) \(\dfrac{4}{x+2}+\dfrac{2}{x-2}+\dfrac{5x+6}{4-x^2}\)
\(=\dfrac{4}{x+2}+\dfrac{2}{x-2}-\dfrac{5x+6}{x^2-4}\)
\(=\dfrac{4}{x+2}+\dfrac{2}{x-2}-\dfrac{5x+6}{\left(x-2\right)\left(x+2\right)}\) MTC: \(\left(x-2\right)\left(x+2\right)\)
\(=\dfrac{4\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}+\dfrac{2\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}-\dfrac{5x+6}{\left(x-2\right)\left(x+2\right)}\)
\(=\dfrac{4\left(x-2\right)+2\left(x+2\right)-\left(5x+6\right)}{\left(x-2\right)\left(x+2\right)}\)
\(=\dfrac{4x-8+2x+4-5x-6}{\left(x-2\right)\left(x+2\right)}\)
\(=\dfrac{x-10}{\left(x-2\right)\left(x+2\right)}\)
c) \(\dfrac{1-3x}{2x}+\dfrac{3x-2}{2x-1}+\dfrac{3x-2}{2x-4x^2}\)
\(=\dfrac{1-3x}{2x}+\dfrac{3x-2}{2x-1}-\dfrac{3x-2}{4x^2-2x}\)
\(=\dfrac{1-3x}{2x}+\dfrac{3x-2}{2x-1}-\dfrac{3x-2}{2x\left(2x-1\right)}\) MTC: \(2x\left(2x-1\right)\)
\(=\dfrac{\left(1-3x\right)\left(2x-1\right)}{2x\left(2x-1\right)}+\dfrac{2x\left(3x-2\right)}{2x\left(2x-1\right)}-\dfrac{3x-2}{2x\left(2x-1\right)}\)
\(=\dfrac{\left(1-3x\right)\left(2x-1\right)+2x\left(3x-2\right)-\left(3x-2\right)}{2x\left(2x-1\right)}\)
\(=\dfrac{2x-1-6x^2+3x+6x^2-4x-3x+2}{2x\left(2x-1\right)}\)
\(=\dfrac{-2x+1}{2x\left(2x-1\right)}\)
\(=\dfrac{-\left(2x-1\right)}{2x\left(2x-1\right)}\)
\(=\dfrac{-1}{2x}\)
d) \(\dfrac{x^2+2}{x^3-1}+\dfrac{2}{x^2+x+1}+\dfrac{1}{1-x}\)
\(=\dfrac{x^2+2}{x^3-1}+\dfrac{2}{x^2+x+1}-\dfrac{1}{x-1}\)
\(=\dfrac{x^2+2}{\left(x-1\right)\left(x^2+x+1\right)}+\dfrac{2}{x^2+x+1}-\dfrac{1}{x-1}\) MTC: \(\left(x-1\right)\left(x^2+x+1\right)\)
\(=\dfrac{x^2+2}{\left(x-1\right)\left(x^2+x+1\right)}+\dfrac{2\left(x-2\right)}{\left(x-1\right)\left(x^2+x+1\right)}-\dfrac{x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\dfrac{\left(x^2+2\right)+2\left(x-2\right)-\left(x^2+x+1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\dfrac{x^2+2+2x-4-x^2-x-1}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\dfrac{-3+x}{\left(x-1\right)\left(x^2+x+1\right)}\)
a) \(\dfrac{x+1}{2}+\dfrac{3x-2}{3}=\dfrac{x-7}{12}\)
\(\Leftrightarrow\dfrac{6\left(x+1\right)+4\left(3x-2\right)}{12}=\dfrac{x-7}{12}\)
\(\Leftrightarrow6\left(x+1\right)+4\left(3x-2\right)=x-7\)
\(\Leftrightarrow6x+6+12x-8=x-7\)
\(\Leftrightarrow6x+12x-x=-7-6+8\)
\(\Leftrightarrow17x=-5\)
\(\Leftrightarrow x=\dfrac{-5}{17}\)
Vậy .........................
b) \(\dfrac{2x}{x-3}-\dfrac{5}{x+3}=\dfrac{x^2+21}{x^2-9}\left(ĐKXĐ:x\ne\pm3\right)\)
\(\Leftrightarrow\dfrac{2x\left(x+3\right)-5\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}=\dfrac{x^2+21}{\left(x-3\right)\left(x+3\right)}\)
\(\Rightarrow2x\left(x+3\right)-5\left(x-3\right)=x^2+21\)
\(\Leftrightarrow2x^2+6x-5x+15=x^2+21\)
\(\Leftrightarrow2x^2-x^2+x+15-21=0\)
\(\Leftrightarrow x^2+x-6=0\)
\(\Leftrightarrow x^2-2x+3x-6=0\)
\(\Leftrightarrow x\left(x-2\right)+3\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\left(n\right)\\x=-3\left(l\right)\end{matrix}\right.\)
Vậy \(S=\left\{2\right\}\)
d) \(\left(x-4\right)\left(7x-3\right)-x^2+16=0\)
\(\Leftrightarrow\left(x-4\right)\left(7x-3\right)-\left(x^2-16\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left(7x-3\right)-\left(x-4\right)\left(x+4\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left(7x-3-x-4\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left(6x-7\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-4=0\\6x-7=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=\dfrac{7}{6}\end{matrix}\right.\)
Vậy .........................
P/s: các câu còn lại tương tự, bn tự giải nha
b: \(\Leftrightarrow\dfrac{2}{\left(x+7\right)\left(x-3\right)}=\dfrac{3x+21}{\left(x-3\right)\left(x+7\right)}\)
=>3x+21=2
=>x=-19/3
d: \(\Leftrightarrow\left(2x+1\right)^2-\left(2x-1\right)^2=8\)
\(\Leftrightarrow4x^2+4x+1-4x^2+4x-1=8\)
=>8x=8
hay x=1
a: \(\left[\dfrac{1}{2}x^2\left(2x-1\right)^m-\dfrac{1}{2}x^{m+2}\right]:\dfrac{1}{2}x^2=0\)
\(\Leftrightarrow\left(2x-1\right)^m-x^m=0\)
\(\Leftrightarrow\left(2x-1\right)^m=x^m\)
=>2x-1=x
=>x=1
b: \(\left(2x-3\right)^8=\left(2x-3\right)^6\)
\(\Leftrightarrow\left(2x-3\right)^6\cdot\left(2x-4\right)\left(2x-2\right)=0\)
hay \(x\in\left\{\dfrac{3}{2};2;1\right\}\)
c: \(\Leftrightarrow4x^2-4x+1+y^2-\dfrac{2}{3}y+\dfrac{1}{9}+\dfrac{6}{9}=0\)
\(\Leftrightarrow\left(2x-1\right)^2+\left(y-\dfrac{1}{3}\right)^2+\dfrac{6}{9}=0\)(vô lý)
giải pt sau
g) 11+8x-3=5x-3+x
\(\Leftrightarrow\) 8x + 8 = 6x - 3
<=> 8x-6x = -3 - 8
<=> 2x = -11
=> x=-\(\dfrac{11}{2}\)
Vậy tập nghiệm của PT là : S={\(-\dfrac{11}{2}\)}
h)4-2x+15=9x+4-2x
<=> 19 - 2x = 7x + 4
<=> -2x - 7x = 4 - 19
<=> -9x = -15
=> x=\(\dfrac{15}{9}=\dfrac{5}{3}\)
Vậy tập nghiệm của pt là : S={\(\dfrac{5}{3}\)}
g)\(\dfrac{3x+2}{2}-\dfrac{3x+1}{6}=\dfrac{5}{3}+2x\)
<=> \(\dfrac{3\left(3x+2\right)}{6}-\dfrac{3x+1}{6}=\dfrac{5.2+6.2x}{6}\)
<=> 9x + 6 - 3x + 1 = 10 + 12x
<=> 6x + 7 = 10 + 12x
<=> 6x -12x = 10-7
<=> -6x = 3
=> x= \(-\dfrac{1}{2}\)
Vậy tập nghiệm của PT là : S={\(-\dfrac{1}{2}\)}
\(h,\dfrac{x+4}{5}-x+4=\dfrac{4x+2}{5}-5\)
<=> \(\dfrac{x+4-5\left(x+4\right)}{5}=\dfrac{4x+2-5.5}{5}\)
<=> x + 4 - 5x - 20 = 4x + 2 - 25
<=> x - 5x - 4x = 2-25-4+20
<=> -8x = -7
=> x= \(\dfrac{7}{8}\)
Vậy tập nghiệm của PT là S={\(\dfrac{7}{8}\)}
\(i,\dfrac{4x+3}{5}-\dfrac{6x-2}{7}=\dfrac{5x+4}{3}+3\)
<=> \(\dfrac{21\left(4x+3\right)}{105}\)-\(\dfrac{15\left(6x-2\right)}{105}\)=\(\dfrac{35\left(5x+4\right)+3.105}{105}\)
<=> 84x + 63 - 90x + 30 = 175x + 140 + 315
<=> 84x - 90x - 175x = 140 + 315 - 63 - 30
<=> -181x = 362
=> x = -2
Vậy tập nghiệm của PT là : S={-2}
K) \(\dfrac{5x+2}{6}-\dfrac{8x-1}{3}=\dfrac{4x+2}{5}-5\)
<=> \(\dfrac{5\left(5x+2\right)}{30}-\dfrac{10\left(8x-1\right)}{30}=\dfrac{6\left(4x+2\right)-150}{30}\)
<=> 25x + 10 - 80x - 10 = 24x + 12 - 150
<=> -55x = 24x - 138
<=> -55x - 24x = -138
=> -79x = -138
=> x=\(\dfrac{138}{79}\)
Vậy tập nghiệm của PT là S={\(\dfrac{138}{79}\)}
m) \(\dfrac{2x-1}{5}-\dfrac{x-2}{3}=\dfrac{x+7}{15}\)
<=> \(\dfrac{3\left(2x-1\right)-5\left(x-2\right)}{15}=\dfrac{x+7}{15}\)
<=> 6x - 3 - 5x + 10 = x+7
<=> x + 7 = x+7
<=> 0x = 0
=> PT vô nghiệm
Vậy S=\(\varnothing\)
n)\(\dfrac{1}{4}\left(x+3\right)=3-\dfrac{1}{2}\left(x+1\right)-\dfrac{1}{3}\left(x+2\right)\)
<=> \(\dfrac{1}{4}x+\dfrac{3}{4}=3-\dfrac{1}{2}x-\dfrac{1}{2}-\dfrac{1}{3}x-\dfrac{2}{3}\)
<=> \(\dfrac{1}{4}x+\dfrac{1}{2}x+\dfrac{1}{3}x=3-\dfrac{1}{2}-\dfrac{2}{3}-\dfrac{3}{4}\)
<=> \(\dfrac{13}{12}x=\dfrac{13}{12}\)
=> x= 1
Vậy S={1}
p) \(\dfrac{x}{3}-\dfrac{2x+1}{6}=\dfrac{x}{6}-6\)
<=> \(\dfrac{2x-2x+1}{6}=\dfrac{x-36}{6}\)
<=> 2x -2x + 1= x-36
<=> 2x-2x-x = -37
=> x = 37
Vậy S={37}
q) \(\dfrac{2+x}{5}-0,5x=\dfrac{1-2x}{4}+0,25\)
<=> \(\dfrac{4\left(2+x\right)-20.0,5x}{20}=\dfrac{5\left(1-2x\right)+20.0,25}{20}\)
<=> 8 + 4x - 10x = 5 - 10x + 5
<=> 4x-10x + 10x = 5+5-8
<=> 4x = 2
=> x= \(\dfrac{1}{2}\)
Vậy S={\(\dfrac{1}{2}\)}
g) \(11+8x-3=5x-3+x\)
\(\Leftrightarrow8+8x=6x-3\)
\(\Leftrightarrow8x-6x=-3-8\)
\(\Leftrightarrow2x=-11\)
\(\Leftrightarrow x=-\dfrac{11}{2}\)
h, \(4-2x+15=9x+4-2x\)
\(\Leftrightarrow-2x-9x+2x=4-4-15\)
\(\Leftrightarrow-9x=-15\)
\(\Leftrightarrow x=\dfrac{-15}{-9}=\dfrac{5}{3}\)
a) 3x-7>4x+2
\(\Leftrightarrow3x-4x>2+7\)
\(\Leftrightarrow-x>9\Leftrightarrow x< -9\)
Vậy S={x<9|x\(\in R\)}
b) 2(x-3)<3-5(2x-1)+4x
\(\Leftrightarrow2x-6< 3-10x+5+4x\)
\(\Leftrightarrow2x+10x-4x< 3+5+6\)
\(\Leftrightarrow8x< 14\Leftrightarrow x< \dfrac{7}{4}\)
Vậy S={x<\(\dfrac{7}{4}\)|x\(\in R\)}
c) (x-2)2+x(x-3)<2x(x-3)+1
\(\Leftrightarrow x^2-4x+4+x^2-3x< 2x^2-6x+1\)
\(\Leftrightarrow-x< -3\)
\(\Leftrightarrow x>3\)
Vậy S =\(\left\{x>3|x\in R\right\}\)
d) \(\dfrac{x-1}{3}-x+1>\dfrac{2x-3}{2}\)
\(\Leftrightarrow2x-2-6x+6>6x-9\)
\(\Leftrightarrow-10x>-13\Leftrightarrow x< \dfrac{13}{10}\)
Vậy S=\(\left\{x< \dfrac{13}{10}|x\in R\right\}\)
Biểu diễn tập nghiệm thì bạn tự làm
a)\(\dfrac{2\left(2x-1\right)-\left(2x+1\right)+4}{4x^2-1}\)
\(=\dfrac{4x-2-2x-1+4}{4x^2-1}=\dfrac{2x+1}{\left(2x-1\right)\left(2x+1\right)}=\dfrac{1}{2x-1}\)
câu b đề đúng ko vậy
Cam ơn bn nha