\(\sqrt{-8a}\) - \(...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 7 2017

a) \(\sqrt{-9a}-\sqrt{9+12a+4a^2}\) \(=\sqrt{9.\left(-a\right)}-\sqrt{\left(3+2a\right)^2}=3\sqrt{-a}-\left|3+2a\right|\)

\(=3\sqrt{9}-\left|3+2\left(-9\right)\right|=3.3-15=-6\)

b) \(1+\dfrac{3m}{m-2}\sqrt{m^2-4x+4}=1+\dfrac{3m}{m-2}\sqrt{\left(m-2\right)^2}=1+\dfrac{3m\left|m-2\right|}{m-2}\)

\(=\left\{{}\begin{matrix}1+3m\left(nếu\left(m-2\right)>0\right)\\1-3m\left(nến\left(m-2\right)< 0\right)\end{matrix}\right.\) \(=\left\{{}\begin{matrix}1+3m\left(nếu\left(m>2\right)\right)\\1-3m\left(nếu\left(m< 2\right)\right)\end{matrix}\right.\)

ta có : \(m=1,5< 2\) vậy giá trị của biểu thức tại m = 1,5 là \(1-3m\) = \(1-3.1,5=-3,5\)

c) \(\sqrt{1-10a+25a^2}-4a=\sqrt{\left(1-5a\right)^2}-4a=\left|1-5a\right|-4a\)

\(=\left\{{}\begin{matrix}1-9a\left(nếu\left(1-5a\right)\ge0\right)\\a-1\left(nếu\left(1-5a\right)< 0\right)\end{matrix}\right.\) \(=\left\{{}\begin{matrix}1-9a\left(nếu\left(a\le\dfrac{1}{5}\right)\right)\\a-1\left(nếu\left(a>\dfrac{1}{5}\right)\right)\end{matrix}\right.\)

ta có : \(a=\sqrt{2}>\dfrac{1}{5}\) vậy giá trị của biểu thức tại \(a=\sqrt{2}\) là a - 1 = \(\sqrt{2}-1\)

d) \(4x-\sqrt{9x^2+6x+1}=4x-\sqrt{\left(3x+1\right)^2}=4x-\left|3x+1\right|\)

\(=\left\{{}\begin{matrix}x-1\left(nếu\left(x\ge-\dfrac{1}{3}\right)\right)\\7x+1\left(nếu\left(x< -\dfrac{1}{3}\right)\right)\end{matrix}\right.\)

ta có : \(x=-\sqrt{3}< -\dfrac{1}{3}\) vậy giá trị của biểu thức tại \(x=-\sqrt{3}\)\(7.\left(-\sqrt{3}\right)+1=1-7\sqrt{3}\)

22 tháng 4 2017

Để học tốt Toán 9 | Giải bài tập Toán 9

Để học tốt Toán 9 | Giải bài tập Toán 9

17 tháng 10 2019

\(1,P=\frac{x+2}{x\sqrt{x}-1}+\frac{\sqrt{x}+1}{x+\sqrt{x}+1}-\frac{\sqrt{x}+1}{x-1}\)

\(=\frac{x+2}{x\sqrt{x}-1}+\frac{\sqrt{x}+1}{\left(x+\sqrt{x}+1\right)}-\frac{\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)

\(=\frac{x+2}{x\sqrt{x}-1}+\frac{\sqrt{x}+1}{\left(x+\sqrt{x}+1\right)}-\frac{1}{\sqrt{x}-1}\)

\(=\frac{x+2}{x\sqrt{x}-1}+\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\left(x+\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}-\frac{x+\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)

\(=\frac{x+2+x-1-x-\sqrt{x}-1}{x\sqrt{x}-1}\)

\(=\frac{x-\sqrt{x}}{x\sqrt{x}-1}\)

\(=\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)

\(=\frac{\sqrt{x}}{x+\sqrt{x}+1}\)

Bài 1:Tính giá trị các biểu thứca)\(\sqrt{9a^2-12a+4}-9a+1\)  Với \(a=\frac{1}{3}\)b)\(\sqrt{4a^4-12a^2+9}-\sqrt{a^4-8a^2+16}\)Với \(a=\sqrt{3}\)c)\(\sqrt{10a^2}-12a\sqrt{10}+36\)Với \(a=\sqrt{\frac{5}{2}}-\sqrt{\frac{2}{5}}\)d)\(\sqrt{16\left(1+4x+4x^2\right)^2}\)Với \(x=-1\)​        Bài 2 : Cho biểu thức \(A=1-\frac{\sqrt{4x^2-4x+1}}{2x-1}\)a) Rút gọn biểu thức Ab) Tính giá trị của biểu thức \(A\)\(khi\)\(x=\frac{1}{3}\)Bài 3 : Cho...
Đọc tiếp

Bài 1:Tính giá trị các biểu thức

a)\(\sqrt{9a^2-12a+4}-9a+1\)  Với \(a=\frac{1}{3}\)

b)\(\sqrt{4a^4-12a^2+9}-\sqrt{a^4-8a^2+16}\)Với \(a=\sqrt{3}\)

c)\(\sqrt{10a^2}-12a\sqrt{10}+36\)Với \(a=\sqrt{\frac{5}{2}}-\sqrt{\frac{2}{5}}\)

d)\(\sqrt{16\left(1+4x+4x^2\right)^2}\)Với \(x=-1\)​        

Bài 2 : Cho biểu thức \(A=1-\frac{\sqrt{4x^2-4x+1}}{2x-1}\)

a) Rút gọn biểu thức A

b) Tính giá trị của biểu thức \(A\)\(khi\)\(x=\frac{1}{3}\)

Bài 3 : Cho biểu thức \(A=\frac{\sqrt{x-1-2\sqrt{x-2}}}{\sqrt{x-2}-1}\)

a) Tìm điều kiện của \(x\)để \(A\)có nghĩa

b) Rút gọn \(A\)

c) Tính \(A\)khi\(x=\sqrt{2013}\)

Bài 4 : Cho biểu thức \(A=\frac{\left(\sqrt{x}-\sqrt{y}\right)^2+4\sqrt{xy}}{\sqrt{x}+\sqrt{y}}-\frac{x-y}{\sqrt{x}-\sqrt{y}}\)

a) Đặt điều kiện để biểu thức \(A\)có nghĩa

b) Rút gọn biểu thức \(A\)

Mấy bạn giúp mình giải với nha, mình đang cần gấp . Mình cảm ơn ạ <3

0
2 tháng 10 2021

a)=1-4a
b) = 2x - 4y
c) = 2x - 2 (nếu x>5)
=2x(nếu x<5)
 

3 tháng 10 2021

-1.       2x.        2x

19 tháng 3 2021

a/ \(P=12\)

b/ \(Q=\frac{\sqrt{x}}{\sqrt{x}-2}\)
c/ Ta có:

\(\frac{P}{Q}=\frac{\frac{x+3}{\sqrt{x}-2}}{\frac{\sqrt{x}}{\sqrt{x}-2}}=\frac{x+3}{\sqrt{x}}\ge\frac{2\sqrt{3x}}{\sqrt{x}}=2\sqrt{3}\)
Dấu = xảy ra khi x = 3 (thỏa tất cả các điều kiện )

19 tháng 3 2021

a. Thay x = 3 vào biểu thức P ta được :

\(p=\frac{x+3}{\sqrt{x}-2}=\frac{9+3}{\sqrt{9}-2}=12\)

b, \(Q=\frac{\sqrt{x}-1}{\sqrt{x}+2}+\frac{5\sqrt{x}-2}{x-4}\)

\(=\frac{\sqrt{x}-1}{\sqrt{x}+2}+\frac{5\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)

\(=\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)+5\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)

\(=\frac{x-3\sqrt{x}+2+5\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)

\(=\frac{x+2\sqrt{x}}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)

\(=\frac{\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)

\(=\frac{\sqrt{x}}{\sqrt{x}-2}\)

c, Ta có :

\(\frac{P}{Q}=\frac{\frac{x+3}{\sqrt{x}-2}}{\frac{\sqrt{x}}{\sqrt{x}-2}}=\frac{x+3}{\sqrt{x}}\ge\frac{2\sqrt{3x}}{\sqrt{x}}=2\sqrt{3}\)

Vậy GTNN \(\frac{P}{Q}=2\sqrt{3}\) khi và chỉ khi \(x=3\)

18 tháng 8 2016

a/ Với x = \(23-12\sqrt{3}\) ta có:

\(x-11=23-12\sqrt{3}-11=12-12\sqrt{3}=12\left(1-\sqrt{3}\right)\) 

\(\sqrt{x-2}-3=\sqrt{23-12\sqrt{3}-2}-3=\sqrt{21-12\sqrt{3}}-3=\sqrt{3^2-2.3.2\sqrt{3}+\left(2\sqrt{3}\right)^2}-3=\sqrt{\left(3-2\sqrt{3}\right)^2}-3=2\sqrt{3}-6\)                        \(=2\sqrt{3}\left(1-\sqrt{3}\right)\)

=>\(\frac{x-11}{\sqrt{x-2}-3}=\frac{12\left(1-\sqrt{3}\right)}{2\sqrt{3}\left(1-\sqrt{3}\right)}=\frac{12}{2\sqrt{3}}=\frac{2\sqrt{3}.2\sqrt{3}}{2\sqrt{3}}=2\sqrt{3}\)

18 tháng 8 2016

b/ \(\frac{1}{2\left(1+\sqrt{a}\right)}+\frac{1}{2\left(1-\sqrt{a}\right)}-\frac{a^2+2}{1-a^3}=\frac{1-\sqrt{a}}{2\left(1-a\right)}+\frac{1+\sqrt{a}}{2\left(1-a\right)}-\frac{a^2+2}{\left(1-a\right)\left(1-a+a^2\right)}\)

=\(\frac{2}{2\left(1-a\right)}-\frac{a^2+2}{\left(1-a\right)\left(1-a+a^2\right)}=\frac{1-a+a^2-a^2-2}{\left(1-a\right)\left(1-a+a^2\right)}=\frac{-a-1}{1-a^3}\)

Thay : \(a=\sqrt{2}tacó:\)

\(\frac{-\sqrt{2}-1}{1-\sqrt{2}^3}=\frac{-\left(1+\sqrt{2}\right)}{1-2\sqrt{2}}\)

31 tháng 5 2017

éo biết

12 tháng 5 2018

a/ \(\sqrt{4a^4-12a^2+9}-\sqrt{a^4-8a^2+16}\)

\(\sqrt{\left(2a^2-3\right)^2}-\sqrt{\left(a^2-4\right)^2}\)

\(|2a^2-3|-|a^2-4|\)

\(2a^2-3+a^2-4\)
\(3a^2-7\)

Thay a=\(\sqrt{3}\).Ta có:

\(3.\left(\sqrt{3}\right)^2-7\)

= 3.3-7=2

12 tháng 5 2018

b/ \(\sqrt{10a^2-12a\sqrt{10}+36}\)

\(\sqrt{\left(a\sqrt{10}\right)^2-2.a\sqrt{10}.6+6^2}\)

\(\sqrt{\left(a\sqrt{10}-6\right)^2}\)

\(|a\sqrt{10}-6|\)

=  \(-a\sqrt{10}+6\)

Thay  a= \(\sqrt{\frac{5}{2}}-\sqrt{\frac{2}{5}}\)=\(\frac{3}{\sqrt{10}}\),Ta có:

\(-\frac{3}{\sqrt{10}}.\sqrt{10}+6\)

= -3+6 =3

3 tháng 7 2017

a) \(\dfrac{a\sqrt{b}+b\sqrt{a}}{\sqrt{ab}}:\dfrac{1}{\sqrt{a}-\sqrt{b}}=\dfrac{\sqrt{ab}\left(\sqrt{a}+\sqrt{b}\right)}{\sqrt{ab}}:\dfrac{1}{\sqrt{a}-\sqrt{b}}\)

\(=\left(\sqrt{a}+\sqrt{b}\right).\left(\sqrt{a}-\sqrt{b}\right)=a-b\)

b) đề sai rồi nha

c) \(\dfrac{a\sqrt{a}-8+2a-4\sqrt{a}}{a-4}=\dfrac{a\sqrt{a}-4\sqrt{a}+2a-8}{a-4}\)

\(=\dfrac{\sqrt{a}\left(a-4\right)+2\left(a-4\right)}{a-4}=\dfrac{\left(\sqrt{a}+2\right)\left(a-4\right)}{a-4}=\sqrt{a}+2\)

23 tháng 8 2018

a) x + \(\sqrt{\left(x-2^{ }\right)^2}\)= x +\(|x-2|\)= x +2-x (vì x<2)

b) \(\sqrt{\left(x-3\right)^2}\)-x = \(|x-3|-x=x-3-x\) (vì x>3)

c) m- \(\sqrt{m^2-2m+1}=m-\sqrt{\left(m-1\right)^2}\)

Những con còn lại bạn làm như trên và rút gọn đi là được

d: \(=x+y-\left|x-y\right|\)

=x+y-x+y=2y

e: \(=\left|5a-1\right|-4a=\left|5\cdot\dfrac{1}{2}-1\right|-2\)

\(=\dfrac{5}{2}-1-2=\dfrac{5}{2}-3=-\dfrac{1}{2}\)

f: \(=\left|2a-3\right|-4a-1\)

\(=\left|-10-3\right|-4\cdot\left(-5\right)-1=13+20-1=32\)