\(\frac{-2}{1.3}\)- \(\frac{2}{3.5}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 3 2017

\(=-\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{25.27}\right)-\frac{2}{27}\)

\(=-\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{25}-\frac{1}{27}\right)-\frac{2}{27}\)

\(=-\left(1-\frac{1}{27}\right)-\frac{2}{27}\)

\(=-1+\frac{1}{27}-\frac{2}{27}\)

\(=-\frac{28}{27}\)

23 tháng 1 2017

a, \(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{99.101}\)

=2.(\(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{99.101}\))

=\(2.\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{101}\right)\)

=\(\frac{2}{2}.\left(1-\frac{1}{101}\right)\)

\(=\frac{100}{101}\)

b, \(\frac{5}{1.3}+\frac{5}{3.5}+...+\frac{5}{99.101}\)

=\(5.\left(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{99.101}\right)\)

=\(5.\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{101}\right)\)

\(=\frac{5}{2}.\left(1-\frac{1}{101}\right)\)

=\(\frac{250}{101}\)

\(=\frac{5}{2}.\frac{100}{101}\)

3 tháng 5 2019

a,21.321.3+23.523.5+25.725.7+....+299.101

=>\(\frac{1}{1}-\frac{1}{3}+\frac{1}{5}-\frac{1}{5}+....+\frac{1}{99}-\frac{1}{101}\)

=>\(\frac{1}{1}-\frac{1}{101}\)

=>\(\frac{100}{101}\)

b,

51.351.3+53.553.5+55.755.7+....+599.101

=>\(\frac{5}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+....+\frac{2}{99.101}\right)\)

=>\(\frac{5}{2}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+....+\frac{1}{99}-\frac{1}{101}\right)\)

=>\(\frac{5}{2}\left(\frac{1}{1}-\frac{1}{101}\right)\)

=>\(\frac{5}{2}.\frac{100}{101}\)

=>\(\frac{250}{101}\)

26 tháng 3 2017

a = 1

+ các phân số lại sẽ có 1 

tk cho mk , mk tk  lại

26 tháng 3 2017

A=1/3 - 1/103=(103-3)/3.103=100/309

28 tháng 4 2017

\(\frac{2}{1.3}\)+\(\frac{2}{3.5}\)+\(\frac{2}{5.7}\)+...+\(\frac{2}{99.101}\)

=\(\frac{1}{2}\).(\(\frac{1}{1}\)-\(\frac{1}{3}\)+\(\frac{1}{3}\)-\(\frac{1}{5}\)+\(\frac{1}{5}\)-\(\frac{1}{7}\)+...+\(\frac{1}{99}\)-\(\frac{1}{101}\)

=\(\frac{1}{2}\).(\(\frac{1}{1}\)-\(\frac{1}{101}\))

=\(\frac{1}{2}\).(\(\frac{101}{101}\)-\(\frac{1}{101}\))

=\(\frac{1}{2}\).\(\frac{100}{101}\)

=\(\frac{1.50}{1.101}\)

=\(\frac{50}{101}\)

8 tháng 5 2017

\(A=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{99.101}\)

\(A=\frac{1}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101}\right)\)

\(A=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\right)\)

\(A=\frac{1}{2}\left(1-\frac{1}{101}\right)\)

\(A=\frac{1}{2}.\frac{100}{101}\)

\(A=\frac{50}{101}\)

\(A=\frac{3^2}{10}+\frac{3^2}{40}+\frac{3^2}{88}+...+\frac{3^2}{340}\)

\(A=\frac{3^2}{2.5}+\frac{3^2}{5.8}+\frac{3^2}{8.11}+...+\frac{3^2}{17.20}\)

\(A=\frac{3^2}{3}\left(\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+...+\frac{3}{17.20}\right)\)

\(A=3\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{17}-\frac{1}{20}\right)\)

\(A=3\left(\frac{1}{2}-\frac{1}{20}\right)\)

\(A=3.\frac{9}{20}\)

\(A=\frac{27}{20}\)

k nhá bn!

8 tháng 5 2017

\(A=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{99.101}\)

\(2A=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{5}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\)

\(2A=1-\frac{1}{101}\)

\(2A=\frac{100}{101}\)

\(\Rightarrow A=\frac{50}{101}\)

\(A=\frac{3^2}{10}+\frac{3^2}{40}+\frac{3^2}{88}+...+\frac{3^2}{340}\)

\(A=\frac{3^2}{2.5}+\frac{3^2}{5.8}+\frac{3^2}{8.11}+...+\frac{3^2}{17.20}\)

\(\Rightarrow A=3\left(\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+...+\frac{1}{17.20}\right)\)

\(A=3\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{17}-\frac{1}{20}\right)\)

\(A=3\left(\frac{1}{2}-\frac{1}{20}\right)\)

\(A=3.\frac{9}{20}\)

\(A=\frac{27}{20}\)

2 tháng 5 2018

\(A=\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{97.99}+\frac{2}{99.101}\)

\(A=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{97}-\frac{1}{99}+\frac{1}{99}-\frac{1}{101}\)

\(A=1-\frac{1}{101}\)

\(A=\frac{101}{101}-\frac{1}{101}\)

\(A=\frac{100}{101}\)

Chúc bạn học tốt !!! 

2 tháng 5 2018

A = 1/1 - 1/3 + 1/3 - 1/5 + 1/5 - 1/7 + 1/7 - 1/9 + ... + 1/99 - 1/101 

A = 1/1 - 1/101 

A = 101/101 - 1/101 

A = 100/101 

10 tháng 7 2019

Bạn gõ lại đề đi :v

Đọc chả hiểu đề gì cả ... đề k có x

Mà phía dưới có cái đáp số x= ... là sao ??

10 tháng 7 2019

a)(\(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{11.12}\)). x=\(\frac{1}{3}\)

(1-\(\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-...-\frac{1}{11}_{ }+\frac{1}{12}\)).x=\(\frac{1}{3}\)

(1+\(\frac{1}{12}\)).x=\(\frac{1}{3}\)

x=\(\frac{1}{3}:\frac{13}{12}\)

x=\(\frac{4}{13}\)

12 tháng 4 2018

Ta có : 

\(\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{97.99}\right)-x=\frac{-100}{99}\)

\(\Leftrightarrow\)\(\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{99}\right)-x=\frac{-100}{99}\)

\(\Leftrightarrow\)\(\left(1-\frac{1}{99}\right)-x=\frac{-100}{99}\)

\(\Leftrightarrow\)\(\frac{98}{99}-x=\frac{-100}{99}\)

\(\Leftrightarrow\)\(x=\frac{98}{99}+\frac{100}{99}\)

\(\Leftrightarrow\)\(x=\frac{198}{99}\)

\(\Leftrightarrow\)\(x=2\)

Vậy \(x=2\)

Chúc bạn học tốt ~ 

12 tháng 4 2018

98/99 - x = -100/99

x = 98/99 - -100/99

x = 198/99

6 tháng 7 2017

\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+.....+\frac{2}{43.45}\)

\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+.....+\frac{1}{43}-\frac{1}{45}\)

\(=1-\frac{1}{45}\)

\(=\frac{44}{45}\)

6 tháng 7 2017

\(\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+...+\frac{2}{43\cdot45}=2\left[\frac{1}{1\cdot3}+\frac{1}{3\cdot5}+...+\frac{1}{43\cdot45}\right]\)

\(=2\left[\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{43}-\frac{1}{45}\right]=2\left[1-\frac{1}{45}\right]\)

\(=2\cdot\frac{44}{45}=\frac{88}{45}\)