Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn gõ lại đề đi :v
Đọc chả hiểu đề gì cả ... đề k có x
Mà phía dưới có cái đáp số x= ... là sao ??
a)(\(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{11.12}\)). x=\(\frac{1}{3}\)
(1-\(\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-...-\frac{1}{11}_{ }+\frac{1}{12}\)).x=\(\frac{1}{3}\)
(1+\(\frac{1}{12}\)).x=\(\frac{1}{3}\)
x=\(\frac{1}{3}:\frac{13}{12}\)
x=\(\frac{4}{13}\)
\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{99.101}\)
Đặt A = \(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{99.101}\)
\(2A=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{99}-\frac{1}{101}\)
\(2A=\frac{1}{1}-\frac{1}{101}\)
\(2A=\frac{100}{101}\)
\(\Rightarrow A=\frac{100}{101}\div2\)
\(\Rightarrow A=\frac{50}{101}\)
A)
\(\frac{1}{30}\)-\(\frac{1}{31}\)+\(\frac{1}{31}\)-\(\frac{1}{32}\)+\(\frac{1}{32}\)-\(\frac{1}{33}\)+...+\(\frac{1}{42}\)-\(\frac{1}{43}\)
=\(\frac{1}{30}\)-\(\frac{1}{43}\)
=\(\frac{13}{1290}\)
B)
=\(\frac{2}{2}\)X(\(\frac{1}{3.5}\)+\(\frac{1}{5.7}\)+\(\frac{1}{7.9}\)+\(\frac{1}{9.11}\))
=\(\frac{1}{2}\)X(\(\frac{2}{3.5}\)+\(\frac{2}{5.7}\)+\(\frac{2}{7.9}\)+\(\frac{2}{9.11}\))
=\(\frac{1}{2}\)X(\(\frac{1}{3}\)-\(\frac{1}{5}\)+\(\frac{1}{5}\)-\(\frac{1}{7}\)+\(\frac{1}{7}\)-\(\frac{1}{9}\)+\(\frac{1}{9}\)-\(\frac{1}{11}\))
=\(\frac{1}{2}\)X(\(\frac{1}{3}\)-\(\frac{1}{11}\))
=\(\frac{1}{2}\)X\(\frac{8}{33}\)
=\(\frac{8}{66}\)=\(\frac{4}{33}\)
A = 1/1.3 + 1/3.5 + 1/5.7 +........+ 1/1999.2001
2.A = 2/1.3 + 2/3.5 + 2/5.7 +........+ 2/1999.2001
2.A = 1 - 1/3 + 1/3 - 1/5 + 1/5 - 1/7 + ..... + 1/1999 - 1/2001
2.A = 1 - 1/2001
2.A = 2000/2001
Vậy A =1000/2001
B = 1/3.5 + 1/5.7 + 1/7.9 +........+ 1/99.101
2.A = 2/3.5 + 2/5.7 + 2/7.9 +........+ 2/99.101
2.A = 1/3 - 1/5 + 1/5 - 1/7 + ..... + 1/99 - 1/101
2.A = 1/3 - 1/101 = 98/303
Vậy A =49/303
\(A=\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{1999.2001}\)
\(2A=\frac{2}{1.3}+\frac{2}{3.5}+....+\frac{2}{1999.2001}\)
\(2A=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+....+\frac{1}{1999}-\frac{1}{2001}\)
\(2A=\frac{1}{1}-\frac{1}{2001}=\frac{2000}{2001}\)
\(A=\frac{2000}{2001}.\frac{1}{2}=\frac{1000}{2001}\)
1/ \(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}+\frac{1}{11.13}\)
\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+\frac{1}{11}-\frac{1}{13}\)
\(=1-\frac{1}{13}=\frac{12}{13}\)
1/5.7 + 1/7.9 + 1/9.11 + ... + 1/49.51
= 1/2 . (2/5.7 + 2/7.9 + 2/9.11 + ... + 2/49.51)
= 1/2 . (1/5 - 1/7 + 1/7 - 1/9 + 1/9 - 1/11 + ... + 1/49 - 1/51)
= 1/2 . (1/5 - 1/51)
= 1/2 . 46/255
= 23/255
S = \(\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+...\frac{1}{49}-\frac{1}{51}\)
S = \(\frac{1}{5}-\frac{1}{51}=\frac{46}{255}\)
=\(\frac{1}{2}x\left(\frac{2}{5x7}+\frac{2}{7x9}+\frac{2}{9x11}+...+\frac{2}{2015x2017}\right)\)
=\(\frac{1}{2}x\left(\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+...+\frac{1}{2015}-\frac{1}{2017}\right)\)
=\(\frac{1}{2}x\left(\frac{1}{5}-\frac{1}{2017}\right)\)
=\(\frac{1}{2}x\frac{2012}{10085}\)
=\(\frac{1006}{10085}\)
a = 1
+ các phân số lại sẽ có 1
tk cho mk , mk tk lại
A=1/3 - 1/103=(103-3)/3.103=100/309