Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=4+2^2+2^3+...+2^{20}\)
\(2B=8+2^3+2^4+...+2^{21}\)
\(2B-B=\left(8+2^3+2^4+...+2^{21}\right)-\left(4+2^2+2^3+...+2^{20}\right)\)
\(B=8+2^{21}-\left(4+2^2\right)=2^{21}\)
\(P=\left(1^2+2^2+...............+2015^2\right):\left(2^2+4^2+........+4030^2\right)\)
\(P=\left(1^2+2^2+............+2015^2\right):\left[\left(1.2\right)^2+\left(2.2\right)^2+.............+\left(2.2015\right)^2\right]\)
\(P=\left(1^2+2^2+........+2015^2\right):\left(1^2.2^2+2^2.2^2+...............+2015^2.2^2\right)\)
\(P=\left(1^2+2^2+......+2015^2\right):2^2.\left(1^2+2^2+.........+2015^2\right)\)
\(P=\left(1^2+2^2+........+2015^2\right).\frac{1}{2^2.\left(1^2+2^2+..............+2015^2\right)}\)
\(P=\frac{1^2+2^2+...............+2015^2}{2^2.\left(1^2+2^2+............+2015^2\right)}=\frac{1}{2^2}=\frac{1}{4}\)
Chúc bạn học tốt
\(S=1+2+2^2+...+2^{99}\)
\(S=\left(1+2\right)+\left(2^2+2^3\right)+...+\left(2^{98}+2^{99}\right)\)
\(S=3+2^2.3+...+2^{98}.3\)
\(=3\left(1+2^2+...+2^{98}\right)⋮3\)
\(2^{10}.2^{x+4}=64^5\)
\(\Leftrightarrow2^{x+14}=2^{30}\)
\(\Leftrightarrow x+14=30\)
\(\Leftrightarrow x=16\)
\(5^x+5^{x+3}=630\)
\(\Rightarrow5^x.1+5^x.125=630\)
\(\Rightarrow5^x.126=630\)
\(\Rightarrow5^x=5\)
\(\Rightarrow x=1\)
\(x+\left(x+1\right)+\left(x+2\right)+\left(x+3\right)+..............+\left(x+100\right)=7450\)
\(\Rightarrow\left(x+x+x+x+.........+x\right)+\left(1+2+3+..........+100\right)=7450\)
\(101x+5050=7450\)
Đến đây tự tính
Đặt \(A=1+2+...+2^{97}+2^{98}+2^{99}\)\(\Rightarrow\)\(2^{100}-A=2^{100}-\left(1+2+...+2^{97}+2^{98}+2^{99}\right)\)
Ta có: \(2A=2+2^2...+2^{98}+2^{99}+2^{100}\)
Lấy \(2A-A\)theo vế, ta có:
\(2A-A=\left(2+2^2...+2^{98}+2^{99}+2^{100}\right)-\left(1+2+...+2^{97}+2^{98}+2^{99}\right)\)
\(\Leftrightarrow2A-A=2+2^2...+2^{98}+2^{99}+2^{100}-1-2-...-2^{97}-2^{98}-2^{99}\)
\(\Leftrightarrow A=2^{100}-1\)
\(\Rightarrow2^{100}-A=2^{100}-2^{100}+1=1\)
Vậy \(2^{100}-\left(1+2+...+2^{97}+2^{98}+2^{99}\right)=1\)
S = 2 + 22 + 23 + 24 + .......+ 22015(1)
2S=22+23+25+....+22016(2)
Lấy (2)-(1)
2S-S=(22+23+25+....+22016)-(2 + 22 + 23 + 24 + .......+ 22015)
S=22016-2
=(24)504-2
=16504-2
=....6-2
=....4
Vậy chữ số tận cùng của S là 4
S = 2 + 22 + 23 + 24 + .......+ 22015
2S = 22+23+24+25+...+22015+22016
Lấy 2S -S ta có
2S - S = ( 22+23+24+25+...+22015+22016 ) - ( 2 + 22 + 23 + 24 + .......+ 22015)
S = 22016 - 2
Ta có 22016 = (24)504
= 16504
= (...6)
=> S = (...6) - 2
=> S = (...4)
Vậy số tận cùng của tổng trên là 4
1^2 +2^2+ ... +n^2 = n(n+1)(2n+1)/6