Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: ĐKXĐ: x>=0; x<>1
b: \(B=\dfrac{2\sqrt{x}+2+x-\sqrt{x}}{x-1}\cdot\dfrac{\sqrt{x}}{x+\sqrt{x}+2}=\dfrac{\sqrt{x}}{x-1}\)
Khi x=3+2căn2 thì \(B=\dfrac{\sqrt{2}+1}{2+2\sqrt{2}}=\dfrac{1}{2}\)
Câu a:
ĐKXĐ: \(x\neq \pm 3\)
\(\left|\frac{x+5}{-x^2+9}\right|=2\Rightarrow \left[\begin{matrix} \frac{x+5}{-x^2+9}=2\\ \frac{x+5}{-x^2+9}=-2\end{matrix}\right.\)
\(\Rightarrow \left[\begin{matrix} x+5=2(-x^2+9)\\ x+5=-2(-x^2+9)\end{matrix}\right.\Rightarrow \left[\begin{matrix} 2x^2+x-13=0\\ 2x^2-x-23=0\end{matrix}\right.\)
\(\Rightarrow \left[\begin{matrix} x=\frac{-1\pm \sqrt{105}}{4}\\ x=\frac{1\pm \sqrt{185}}{4}\end{matrix}\right.\) (đều thỏa mãn )
Vậy.......
Câu b:
ĐKXĐ: \(x< 2\)
Ta có: \(\frac{4}{\sqrt{2-x}}-\sqrt{2-x}=2\)
\(\Rightarrow 4-(2-x)=2\sqrt{2-x}\)
\(\Leftrightarrow 4=(2-x)+2\sqrt{2-x}\)
\(\Leftrightarrow 5=(2-x)+2\sqrt{2-x}+1=(\sqrt{2-x}+1)^2\)
\(\Rightarrow \sqrt{2-x}+1=\sqrt{5}\) (do \(\sqrt{2-x}+1>0\) )
\(\Rightarrow \sqrt{2-x}=\sqrt{5}-1\)
\(\Rightarrow 2-x=6-2\sqrt{5}\)
\(\Rightarrow x=-4+2\sqrt{5}\) (thỏa mãn)
Vậy...........
a: \(A=\dfrac{4\sqrt{x}-6-\sqrt{x}+1}{2\sqrt{x}-3}:\left(\dfrac{6\sqrt{x}+1}{\left(2\sqrt{x}-3\right)\left(\sqrt{x}+1\right)}+\dfrac{\sqrt{x}}{\sqrt{x}+1}\right)\)
\(=\dfrac{3\sqrt{x}-5}{2\sqrt{x}-3}:\dfrac{6\sqrt{x}+1+2x-3\sqrt{x}}{\left(2\sqrt{x}-3\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{3\sqrt{x}-5}{\left(2\sqrt{x}-3\right)}\cdot\dfrac{\left(2\sqrt{x}-3\right)\left(\sqrt{x}+1\right)}{\left(2\sqrt{x}+1\right)\left(\sqrt{x}+1\right)}=\dfrac{3\sqrt{x}-5}{2\sqrt{x}+1}\)
b: Thay \(x=\dfrac{\left(\sqrt{2}-1\right)^2}{4}\) vào A, ta được:
\(A=\left(3\cdot\dfrac{\sqrt{2}-1}{2}-5\right):\left(2\cdot\dfrac{\sqrt{2}-1}{2}+1\right)\)
\(=\dfrac{3\sqrt{2}-3-10}{2}:\dfrac{2\sqrt{2}-2+2}{2}\)
\(=\dfrac{3\sqrt{2}-13}{2\sqrt{2}}=\dfrac{6-13\sqrt{2}}{4}\)
1) \(y=\dfrac{2x^2+1}{x^3-5x+4}\)
ĐK \(x^3-5x+4\ne0\Leftrightarrow\left\{{}\begin{matrix}x\ne1\\x\ne\dfrac{\sqrt{17}-1}{2}\\x\ne\dfrac{-\sqrt{17}-1}{2}\end{matrix}\right.\)
TXĐ \(D=R\backslash\left\{1;\dfrac{\sqrt{17}-1}{2};\dfrac{-\sqrt{17}-1}{2}\right\}\)
2) \(y=\dfrac{\sqrt{x-2}}{\left(x-3\right)^3-1}\)
ĐK \(\left\{{}\begin{matrix}x-2\ge0\\x-3\ne1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge2\\x\ne4\end{matrix}\right.\)
TXĐ \(D=[2;+\infty)\backslash\left\{4\right\}\)
3) \(y=\sqrt{x-2}-\dfrac{2}{\sqrt[3]{x-1}}\)
ĐK\(\left\{{}\begin{matrix}x+2\ge0\\x-1\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge-2\\x\ne1\end{matrix}\right.\)
TXĐ \(D=[-2;+\infty)\backslash\left\{1\right\}\)
4) \(y=\dfrac{x^2+2}{\sqrt{\left(x+3\right)^2}}=\dfrac{x^2+2}{\left|x-3\right|}\)
ĐK \(x-3\ne0\Leftrightarrow x\ne3\)
TXĐ \(D=R\backslash\left\{3\right\}\)
5) \(y=\dfrac{\sqrt{x^2-2}}{\sqrt{x}\left(\sqrt{x}-3\right)}\)
ĐK \(\left\{{}\begin{matrix}x^2-2\ge0\\x>0\\\sqrt{x}-3\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\in(-\infty;-\sqrt{2}]\cap[\sqrt{2};+\infty)\\x>0\\x\ne9\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x\ge\sqrt{2}\\x\ne9\end{matrix}\right.\)
TXĐ \(D=[\sqrt{2};+\infty)\backslash\left\{9\right\}\)
6) \(y=\sqrt{1-\sqrt{1+x}}\)
ĐK \(\left\{{}\begin{matrix}x+1\ge0\\1-\sqrt{1+x}\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge-1\\1\ge\sqrt{1+x}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-1\\1\ge1+x\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge-1\\x\le0\end{matrix}\right.\)
TXĐ \(D=\left[0;-1\right]\)
a: ĐKXĐ: x-1>0 và x+2<>0
=>x>1
b: DKXĐ: (x-2)căn x-1<>0
=>x-1>0 và x-2<>0
=>x>1 và x<>2
c: ĐKXĐ: 2x-1>=0 và 3-x>0
=>x>=1/2 và x<3
d: ĐKXĐ: x-1>0 và x-2<>0
=>x>1 và x<>2
e: ĐKXĐ: x3+1>=0
=>x>=-1
a) \(\sqrt{x^2-3x+3}+\sqrt{x^2-3x+6}=3\)
Đặt \(\sqrt{x^2-3x+3}=a;\sqrt{x^2-3x+6}=b\left(a;b>0\right)\)
\(\Rightarrow\left\{{}\begin{matrix}a+b=3\\b^2-a^2=3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a+b=3\\\left(b+a\right)\left(b-a\right)=3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}b+a=3\\b-a=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}b=2\\a=1\end{matrix}\right.\) (nhận)
\(\Rightarrow\sqrt{x^2-3x+3}=1\)
\(\Leftrightarrow x^2-3x+3=1\)
\(\Leftrightarrow\left(x-1\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\) (nhận)
b) \(\sqrt{3-x+x^2}-\sqrt{2+x-x^2}=1\)
Đặt \(\sqrt{3-x+x^2}=a;\sqrt{2+x-x^2}=b\left(a;b>0\right)\)
\(\Rightarrow\left\{{}\begin{matrix}a-b=1\\a^2+b^2=5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=b+1\\\left(b^2+2b+1\right)+b^2-5=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=b+1\\2\left(b-1\right)\left(b+2\right)=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a=2\\b=1\end{matrix}\right.\) (vì \(b+2>0\)) (nhận)
\(\Rightarrow\sqrt{2+x-x^2}=1\)
\(\Leftrightarrow2+x-x^2=1\)
\(\Leftrightarrow x^2-x-1=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1+\sqrt{5}}{2}\\x=\dfrac{1-\sqrt{5}}{2}\end{matrix}\right.\) (nhận)
d) \(5\sqrt{x}+\dfrac{5}{2\sqrt{x}}=2x+\dfrac{1}{2x}+4\)
\(\Leftrightarrow2\left(x+\dfrac{1}{4x}\right)+4=5\left(\sqrt{x}+\dfrac{1}{2\sqrt{x}}\right)\)
\(\Leftrightarrow2\left[\left(\sqrt{x}+\dfrac{1}{2\sqrt{x}}\right)^2-1\right]-5\left(\sqrt{x}+\dfrac{1}{2\sqrt{x}}\right)+4=0\)
\(\Leftrightarrow2\left(\sqrt{x}+\dfrac{1}{2\sqrt{x}}\right)^2-5\left(\sqrt{x}+\dfrac{1}{2\sqrt{x}}\right)+2=0\)
Đặt \(\sqrt{x}+\dfrac{1}{2\sqrt{x}}=a\left(a\ge\sqrt{2}\right)\)
\(\Rightarrow2a^2-5a+2=0\)
\(\Leftrightarrow\left(a-2\right)\left(2a-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=2\left(\text{nhận}\right)\\a=\dfrac{1}{2}\left(\text{loại}\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{x}+\dfrac{1}{2\sqrt{x}}=2\)
\(\Leftrightarrow2x-4\sqrt{x}+1=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=\dfrac{2+\sqrt{2}}{2}\\\sqrt{x}=\dfrac{2-\sqrt{2}}{2}\end{matrix}\right.\) (nhận)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3+2\sqrt{2}}{2}\\x=\dfrac{3-2\sqrt{2}}{2}\end{matrix}\right.\) (nhận)
a: \(A=\dfrac{x+4\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}-\dfrac{x-1}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}-\dfrac{\sqrt{x}-2}{\sqrt{x}}\cdot\dfrac{1-1+\sqrt{x}}{1-\sqrt{x}}\)
\(=\dfrac{x+4\sqrt{x}-2-x+1}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}+\dfrac{\sqrt{x}-2}{\sqrt{x}-1}\)
\(=\dfrac{4\sqrt{x}-1+x-4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}=\dfrac{x+4\sqrt{x}-5}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)
\(=\dfrac{\sqrt{x}+5}{\sqrt{x}+2}\)
b: \(B=\dfrac{x\sqrt{x}+26\sqrt{x}-19}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}-\dfrac{2x+6\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}+\dfrac{x-4\sqrt{x}+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{x\sqrt{x}+26\sqrt{x}-19-2x-6\sqrt{x}+x-4\sqrt{x}+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{x\sqrt{x}-x+16\sqrt{x}-16}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}=\dfrac{x+16}{\sqrt{x}+3}\)