Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{\frac{2}{7}+\frac{2}{5}+\frac{2}{17}+\frac{2}{293}}{\frac{3}{7}+\frac{3}{5}+\frac{3}{17}+\frac{3}{293}}\)
\(=\frac{2\left(\frac{1}{7}+\frac{1}{5}+\frac{1}{17}+\frac{1}{293}\right)}{3\left(\frac{1}{7}+\frac{1}{5}+\frac{1}{17}+\frac{1}{293}\right)}\)
\(=\frac{2}{3}\)
C= \(\frac{2\left(\frac{1}{7}+\frac{1}{5}+\frac{1}{17}-\frac{1}{293}\right)}{3\left(\frac{1}{7}+\frac{1}{5}+\frac{1}{17}-\frac{1}{293}\right)}\) (Đặt lần lượt 2 và 3 ở tử và mẫu ra ngoài)
= \(\frac{2}{3}\)
\(C=\frac{2\left(\frac{1}{7}+\frac{1}{5}+\frac{1}{17}-\frac{1}{293}\right)}{3\left(\frac{1}{7}+\frac{1}{5}+\frac{1}{17}-\frac{1}{293}\right)}\)
\(C=\frac{2}{3}\)
F = \(\frac{\frac{2}{7}+\frac{2}{5}+\frac{2}{17}-\frac{2}{293}}{\frac{3}{7}-\frac{3}{203}+\frac{3}{17}+\frac{3}{5}}=\frac{2\left(\frac{1}{7}+\frac{1}{5}+\frac{1}{17}-\frac{1}{293}\right)}{3\left(\frac{1}{7}+\frac{1}{5}+\frac{1}{17}-\frac{1}{293}\right)}\)
F = \(\frac{2}{3}\)
=>\(\frac{x+\frac{2}{7}+\frac{2}{17}-\frac{2}{293}}{\frac{3}{7}+\frac{3}{5}+\frac{3}{17}-\frac{3}{293}}-\frac{2}{3}=0\)
=>\(\frac{x+0,396535406}{1,194803109}-\frac{2}{3}=0\)
=>x+0,396535406:1,194803109-2/3=0
x+0,396535406:1,194803109=0+2/3=2/3
còn lại tự giải nha nhiều quá
a) \(\frac{\frac{2}{7}+\frac{2}{5}+\frac{2}{17}+\frac{2}{293}}{\frac{3}{7}+\frac{3}{5}+\frac{3}{17}+\frac{3}{293}}+\frac{\frac{7}{12}+\frac{5}{6}-1}{5-\frac{3}{4}+\frac{1}{3}}\) \(=\frac{2\left(\frac{1}{7}+\frac{1}{5}+\frac{1}{17}+\frac{1}{293}\right)}{3\left(\frac{1}{7}+\frac{1}{5}+\frac{1}{17}+\frac{1}{293}\right)}+\frac{\frac{5}{12}}{\frac{55}{12}}\)
\(=\frac{2}{3}+\frac{1}{11}=\frac{25}{33}\)
b) \(\left(1-\frac{1}{7}\right).\left(1-\frac{2}{7}\right)....\left(1-\frac{10}{7}\right)=\left(1-\frac{1}{7}\right).\left(1-\frac{2}{7}\right)...\left(1-\frac{7}{7}\right).\left(1-\frac{8}{7}\right).\left(1-\frac{9}{7}\right).\) \(\left(1-\frac{10}{7}\right)\) = 0
a)\(\frac{\frac{2}{7}+\frac{2}{5}+\frac{2}{17}+\frac{2}{293}}{\frac{3}{7}+\frac{3}{5}+\frac{3}{17}+\frac{3}{293}}+\frac{\frac{7}{12}+\frac{5}{6}-1}{5-\frac{3}{4}+\frac{1}{3}}\)
\(=\frac{2\left(\frac{1}{7}+\frac{1}{5}+\frac{1}{17}+\frac{1}{293}\right)}{3\left(\frac{1}{7}+\frac{1}{5}+\frac{1}{17}+\frac{1}{293}\right)}+\frac{\frac{7}{12}+\frac{10}{12}-\frac{12}{12}}{\frac{60}{12}-\frac{9}{12}+\frac{4}{12}}\)
\(=\frac{2}{3}+\frac{\frac{5}{12}}{\frac{55}{12}}\)
\(=\frac{2}{3}+\frac{1}{11}\)
\(=\frac{25}{33}\)
b)\(\left(1-\frac{1}{7}\right)\cdot\left(1-\frac{2}{7}\right)\cdot...\cdot\left(1-\frac{10}{7}\right)\)
Ta nhận thấy trong tích này có 1 thừa số là\(\left(1-\frac{7}{7}\right)=0\)nên tích trên sẽ bằng 0.
\(A=\frac{\frac{2}{7}+\frac{2}{5}+\frac{2}{17}-\frac{2}{293}}{\frac{3}{7}+\frac{3}{5}+\frac{3}{17}-\frac{3}{293}}\)
\(A=\frac{2.\left(\frac{1}{7}+\frac{1}{5}+\frac{1}{17}-\frac{1}{293}\right)}{3.\left(\frac{1}{7}+\frac{1}{5}+\frac{1}{17}-\frac{1}{293}\right)}\)
\(A=\frac{2}{3}\)