Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trả lời:
( x - 3 ) ( x2 + 3x + 9 ) - ( x2 - 27x )
= x3 - 27 - x2 + 27x
= x3 - x2 + 27x - 27
Bạn viết rõ hơn nhé :
\(\frac{x^4-xy^3}{2xy+y^2}:\frac{x^3+x^2y+xy^2}{2x+y}\)
= \(\frac{x^4-xy^3}{2xy+y^2}.\frac{2x+y}{x^3+x^2y+xy^2}\)
= \(\frac{x.\left(x-y\right).\left(x^2+xy+y^2\right).\left(2x+y\right)}{y.\left(2x+y\right).x.\left(x^2+xy+y^2\right)}\)
= \(\frac{x-y}{y}\)
Chúc bạn học tốt !!!
\(a,\left(x-3\right)\left(x^2+3x+9\right)-\left(x^2-1\right)\left(x+27\right)\)
\(=\left(x^3-27\right)-x^3-27x^2+x+27=x-27x^2\)
\(b,\left(3-x\right)^3-\left(x+3\right)\left(x^2-3x+9\right)\)
\(=27-9x+3x^2-x^3-\left(x^3+27\right)=3x^2-9x-2x^3\)
\(c,\left(x-2\right)\left(x^2+2x+4\right)-x\left(x-3\right)\left(x+3\right)\)
\(=\left(x^3-8\right)-x\left(x^2-9\right)=x^3-8-x^3+9x=9x-8\)
a) (x-3)(x2+3x+9)-(x2-1)(x+27)
=(x3-27)-(x3+27x2-x-27)
=x3-27-x3-27x2+x+27
=-27x2+x
=x(-27x+1)
b) (3-x)3-(x+3)(x2-3x+9)
=27-27x+9x2-x3-x3-27
=-2x3+9x2-27x
=x(-2x+9x-27)
c) (x-2)(x2+2x+4)-x(x-3)(x+3)
=x3-8-x(x2-9)
=x3-8-x3+9x
=9x-8
#H
1, ( x + 3 )( x- 4 ) + ( x - 4 ) mũ 2
=x^2+4x+3x-12+x^2-8x+16
=2x^2-x+4
3, x( x -14 ) - 10(x - 1) mũ 2
=x^2-14x-10(x^2-2x+1)
=x^2-14x-10x^2-20x+10
=-9x^2-34x+10
a, \(2x\left(x+2\right)-\left(x+2\right)\left(x-2\right)=\left(x+2\right)^2=x^2+4x+4\)
b, \(\left(x-3\right)\left(x^2+3x+9\right)-\left(x^2-27x\right)=x^3-27-x^2+27x\)
c, \(\left(x+y\right)\left(x^2-xy+y^2\right)-\left(x-y\right)\left(x^2+xy+y^2\right)=x^3+y^3-x^3+y^3=2y^3\)
Bài 2:
a: Ta có: \(M=\left(x+y\right)^3+2x^2+4xy+2y^2\)
\(=\left(x+y\right)^3+2\cdot\left(x+y\right)^2\)
\(=7^3+2\cdot7^2=441\)
Bài 9:
a) Ta có: \(A=\left(2x+y\right)^2-\left(2x+y\right)\left(2x-y\right)+y\left(x-y\right)\)
\(=4x^2+4xy+y^2-4x^2+y^2-xy-y^2\)
\(=3xy-y^2\)
\(=3\cdot\left(-2\right)\cdot3-3^2=-18-9=-27\)
b) Ta có: \(B=\left(a-3b\right)^2-\left(a+3b\right)^2-\left(a-1\right)\left(b-2\right)\)
\(=a^2-6ab+9b^2-a^2-6ab-9b^2-ab+2a+b-2\)
\(=-13ab+2a+b-2\)
\(=-13\cdot\dfrac{1}{2}\cdot\left(-3\right)+2\cdot\dfrac{1}{2}+\left(-3\right)-2\)
\(=\dfrac{31}{2}\)
Bài 7:
a) \(498^2=\left(500-2\right)^2=250000-2000+4=248004\)
b) \(93\cdot107=100^2-7^2=10000-49=9951\)
c) \(163^2+74\cdot163+37^2=\left(163+37\right)^2=200^2=40000\)
d) \(1995^2-1994\cdot1996=1995^2-1995^2+1=1\)
e) \(9^8\cdot2^8-\left(18^4-1\right)\left(18^4+1\right)\)
\(=18^8-18^8+1=1\)
f) \(125^2-2\cdot125\cdot25+25^2=\left(125-25\right)^2=100^2=10000\)
Lời giải :
1. \(\left(\frac{1}{2}a+b\right)^3+\left(\frac{1}{2}a-b\right)^3\)
\(=\frac{a^3}{8}+\frac{3a^2b}{4}+\frac{3ab^2}{2}+b^3+\frac{a^3}{8}-\frac{3a^2b}{4}+\frac{3ab^2}{2}-b^3\)
\(=\frac{a^3}{4}+3ab^2\)
Lời giải :
2. \(x^3-3x^2+3x-1=0\)
\(\Leftrightarrow\left(x-1\right)^3=0\)
\(\Leftrightarrow x-1=0\)
\(\Leftrightarrow x=1\)
Vậy...
\(=9^n-9^n-1\cdot3+1\cdot3^n=3^n-3\)