\(\dfrac{x^2}{x^2-y^2-z^2}+\dfrac{y^2}{y^2-x^2-z^2}+\dfrac{z^2}{z^...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 1 2018

x+y+z=0

=> x+y=-z

=> (x+y)2=z2

=>x2+2xy+y2=z2

=>2xy=z2-x2-y2

tương tự ta được

2yz=x2-y2-z2

2xz=y2-x2-z2

ta lại có

*x+y+z=0 => x+y=-z hay z=-(x+y)

* x3+y3+z3

=(x3+y3)-(x+y)3

=(x+y)(x2-xy+y2)-(x+y)3

=(x+y)[x2-xy+y2-(x+y)2]

=(x+y)(x2-xy+y2-x2-2xy-y2)

=(x+y)(-3xy)

=-z.(-3xy)

=3xyz

=> A=\(\dfrac{x^2}{2xy}+\dfrac{y^2}{2xz}+\dfrac{z^2}{2xy}=\dfrac{x^3+y^3+z^3}{2xyz}=\dfrac{3xyz}{2xyz}=\dfrac{3}{2}\)

5 tháng 1 2018

Sửa lại đề nha: x+y+z=0

a)

Xét x+y+z=0

(x+y+z)2=02

x2+y2+z2+2xy+2yz+2zx=0

=> x2+y2+z2=-2xy-2yz-2zx

Xét \(\dfrac{x^2+y^2+z^2}{\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2}\)

= \(\dfrac{x^2+y^2+z^2}{\left(x^2-2xy+y^2\right)+\left(y^2-2yz+z^2\right)+\left(z^2-2zx+x^2\right)}\)

=\(\dfrac{x^2+y^2+z^2}{x^2-2xy+y^2+y^2-2yz+z^2+z^2-2zx+x^2}\)

=\(\dfrac{x^2+y^2+z^2}{2x^2+2y^2+2z^2-2xy-2yz-2zx}\)(1)

Thay x2+y2+z2=-2xy-2yz-2zx vào (1)

=>\(\dfrac{x^2+y^2+z^2}{2x^2+2y^2+2z^2+x^2+y^2+z^2}\\=\dfrac{x^2+y^2+z^2}{3x^2+3y^2+3z^2}\\ =\dfrac{x^2+y^2+z^2}{3\left(x^2+y^2+z^2\right)}\\ =\dfrac{1}{3}\)

5 tháng 1 2018

b)

Xét x+y+z=0 ba lần:

- Lần 1:x+y+z=0

<=> x+y=0-z

<=>(x+y)2=(0-z)2

<=>x2+2xy+y2=z2

<=>x2+y2-z2=-2xy(1)

-Lần 2: x+y+z=0

<=> y+z=0-x

<=>(y+z)2=(0-x)2

<=>y2+2yz+z2=x2

<=>y2+z2-x2=-2yz(2)

-Lần 3: x+y+z=0

<=>z+x=0-y

<=>(z+x)2=(0-y)2

<=>z2+2zx+x2=y2

<=> z2+x2-y2=-2zx(3)

Thay (1),(2),(3) vào Q, ta có:

=>\(\dfrac{\left(x^2+y^2-z^2\right)\left(y^2+z^2-x^2\right)\left(z^2+x^2-y^2\right)}{16xyz}=\dfrac{\left(-2xy\right)\left(-2yz\right)\left(-2zx\right)}{16xyz}\\=\dfrac{\left(-2yz\right)\left(-2zx\right)}{-8z}\\ =\dfrac{y\left(-2zx\right)}{4}\\ =\dfrac{-2xyz}{4}\\ =-\dfrac{xyz}{2}\)

22 tháng 8 2017

1)

\(\Leftrightarrow\left(x^2-2+\dfrac{1}{x^2}\right)+\left(y^2-2+\dfrac{1}{y^2}\right)+z^2=0\)

\(\Leftrightarrow\left(x-\dfrac{1}{x}\right)^2+\left(y-\dfrac{1}{y}\right)^2+z^2=0\)

\(\left\{{}\begin{matrix}x-\dfrac{1}{x}=0\Rightarrow\left|x\right|=1\\y-\dfrac{1}{y}=0\Rightarrow\left|y\right|=1\\z=0\end{matrix}\right.\)

22 tháng 8 2017

dk\(x,y,z,a,b,c\ne0\)\(\left\{{}\begin{matrix}\dfrac{a}{x}=A\\\dfrac{b}{y}=B\\\dfrac{c}{z}=C\end{matrix}\right.\) \(\Rightarrow A,B,C\ne0\)

\(\left\{{}\begin{matrix}A+B+C=2\\\dfrac{1}{A}+\dfrac{1}{B}+\dfrac{1}{C}=0\end{matrix}\right.\)

\(\left\{{}\begin{matrix}A^2+B^2+C^2+2\left(AB+BC+AC\right)=4\\\dfrac{ABC}{A}+\dfrac{ABC}{B}+\dfrac{ABC}{C}=0\end{matrix}\right.\)

\(\left\{{}\begin{matrix}AB+BC+AC=0\\A^2+B^2+C^2=4\end{matrix}\right.\)

\(\left(\dfrac{a}{x}\right)^2+\left(\dfrac{b}{y}\right)^2+\left(\dfrac{c}{z}\right)^2=4\)

22 tháng 6 2018

bài 4: Ta có \(x^2-2y^2=xy\Rightarrow x^2-y^2=xy+y^2\Rightarrow\left(x-y\right)\left(x+y\right)=y\left(x+y\right)\)

\(x-y=y\Rightarrow x=2y\)

thay x=2y vào A ta đc :

A = \(\dfrac{x-y}{x+y}=\dfrac{2y-y}{2y+y}=\dfrac{y}{3y}=\dfrac{1}{3}\)

AH
Akai Haruma
Giáo viên
22 tháng 6 2018

Bài 1:

Ta có: \(x+y+z=0\Rightarrow z=-x-y\Rightarrow z^2=(-x-y)^2\)

\(\Rightarrow x^2+y^2-z^2=x^2+y^2=x^2+y^2-(-x-y)^2=-2xy\)

Hoàn toàn tương tự:

\(y^2+z^2-x^2=-2yz; z^2+x^2-y^2=-2xz\)

Do đó:

\(P=\frac{(x^2+y^2-z^2)(y^2+z^2-x^2)(z^2+x^2-y^2)}{16xyz}=\frac{(-2xy)(-2yz)(-2xz)}{16xyz}=\frac{-xyz}{2}\)

17 tháng 8 2017

1) Đặt \(B=x^2+y^2+z^2\)

\(C=\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=2\left(x^2+y^2+z^2\right)-2\left(xy+yz+xz\right)\)

Ta có: \(x+y+z=0\Rightarrow\left(x+y+z\right)^2=0\)

\(\Leftrightarrow-2\left(xy+yz+xz\right)=x^2+y^2+z^2\)

Suy ra: \(C=2\left(x^2+y^2+z^2\right)-2\left(xy+yz+xz\right)=2\left(x^2+y^2+z^2\right)+x^2+y^2+z^2=3\left(x^2+y^2+z^2\right)\)

\(\Rightarrow A=\dfrac{B}{C}=\dfrac{x^2+y^2+z^2}{3\left(x^2+y^2+z^2\right)}=\dfrac{1}{3}\)

17 tháng 8 2017

2) \(x^2-2y^2=xy\Leftrightarrow x^2-xy-2y^2=0\)

\(\Leftrightarrow x^2+xy-2xy-2y^2=0\)

\(\Leftrightarrow x\left(x+y\right)-2y\left(x+y\right)=0\)

\(\Leftrightarrow\left(x-2y\right)\left(x+y\right)=0\)

Do \(x+y\ne0\) nên \(x-2y=0\Leftrightarrow x=2y\)

Do đó: \(A=\dfrac{2y-y}{2y+y}=\dfrac{y}{3y}=\dfrac{1}{3}\)