\(4-\frac{1}{1+\frac{1}{1+\frac{1}{1+\frac{1}{3+\frac{1}{2+\frac{1}{4+\fra...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 8 2015

 ====== 83/88 

23 tháng 3 2018

a/ (x-2)/4 =5+x/2

=> \(\frac{x-2}{4}\) = \(\frac{x+5}{2}\)

=> 2(x-2) = 4(x+5)

2x-4 =4x+20

4x-2x=-20-4

2x=-24

x=-12

23 tháng 3 2018

sr chua hết

b/ A = 1 +1/2 +1/22 +.....+1/22012

=> 2A=2 +1 /2 +1/2 +....+1/22011

=> 2A-A=2 +1 /2 +1/2 +....+1/22011 - (1 +1/2 +1/22 +.....+1/22012))

=> A=2-1/22012

3 tháng 2 2017

\(1\frac{1}{2}.1\frac{1}{3}.1\frac{1}{4}.....1\frac{1}{2015}\)

\(=\frac{3}{2}.\frac{4}{3}.\frac{5}{4}........\frac{2016}{2015}\)

\(=\frac{3.4.5.....2016}{2.3.4....2015}=\frac{2016}{2}=1008\)

3 tháng 2 2017

\(A=\frac{3}{2}.\frac{4}{3}.\frac{5}{4}...\frac{2016}{2015}\)

\(A=\frac{2016}{2}=1008\)

Xong nhé bạn!

25 tháng 3 2020

1, =\(\frac{2\left(\frac{1}{5}+\frac{1}{7}-\frac{1}{9}-\frac{1}{11}\right)}{4\left(\frac{1}{5}+\frac{1}{7}-\frac{1}{9}-\frac{1}{11}\right)}=\frac{1}{2}\)

2, A=\(\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot...\cdot\frac{99}{100}\)

\(\frac{1\cdot2\cdot3\cdot....\cdot99}{2\cdot3\cdot4\cdot...\cdot100}=\frac{1}{100}\)

Vậy ......

hok tốt

24 tháng 4 2017

Tờ làm luôn, ko ghi đề nữa nhé

\(A=\frac{\frac{24}{12}-\frac{4}{12}+\frac{3}{12}}{\frac{24}{12}+\frac{2}{12}-\frac{3}{12}}\)

\(A=\frac{\frac{23}{12}}{\frac{23}{12}}=1\)

Vậy A=1

24 tháng 4 2017

\(A=\frac{2-\frac{1}{3}+\frac{1}{4}}{2+\frac{1}{6}-\frac{1}{4}}\)\(=\frac{2-\frac{2}{6}+\frac{2}{8}}{2+\frac{2}{12}-\frac{2}{8}}\)\(=\frac{2\left(1-\frac{1}{6}+\frac{1}{8}\right)}{-2\left(1-\frac{1}{12}+\frac{1}{8}\right)}\)\(=-1\)

19 tháng 4 2017

1) Ta có : \(\frac{x-2}{4}=\frac{5+x}{3}\)

\(\Rightarrow\left(x-2\right).3=\left(5+x\right).4\)

\(\Rightarrow3x-6=20+4x\)

\(\Rightarrow3x=26+4x\)

\(\Rightarrow3x=26+x+3x\)

\(\Rightarrow0=26+x\) 

\(\Rightarrow x=0-26\)

\(\Rightarrow x=-26\)

2) Ta có : \(A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2012}}\)

\(\Rightarrow\frac{1}{A}=1+2+2^2+...+2^{2012}\)

\(\Rightarrow\frac{2}{A}=2+2^2+2^3+...+2^{2013}\)

\(\Rightarrow\frac{2}{A}-\frac{1}{A}=\left(2+2^2+2^3+...+2^{2013}\right)-\left(1+2+2^2+...+2^{2012}\right)\)

\(\Rightarrow\frac{1}{A}=2^{2013}+1\)

\(\Rightarrow A=\frac{1}{2^{2013}+1}\)

12 tháng 3 2017

\(D=\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot...\cdot\frac{2014}{2015}\)

\(D=\frac{1\cdot2\cdot3\cdot...\cdot2014}{2\cdot3\cdot4\cdot...\cdot2015}=\frac{1}{2015}nhebn\)

12 tháng 3 2017

(2/2-1/2).(3/3-1/3).(4/4-1/4)............(2015/2015-1/2015 )

1/2.2/3.3/4.....................2014/2015

=1/2015

10 tháng 5 2018

\(A=1+\frac{1}{2}+\frac{1}{^{2^2}}+\frac{1}{2^3}+...+\frac{1}{2^{2012}}\)

\(2A=2+1+\frac{1}{2}+...+\frac{1}{2^{2011}}\)

\(2A-A=\left(2+1+\frac{1}{2}+...+\frac{1}{2^{2011}}\right)-\left(1+\frac{1}{2}+\frac{1}{^{2^2}}+\frac{1}{2^3}+...+\frac{1}{2^{2012}}\right)\)

\(A=2-\frac{1}{2^{2012}}\)

10 tháng 5 2018

A=\(1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2012}}\)

\(\Leftrightarrow A=1+\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2012}}\right)\)

Đặt \(I=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2012}}\)

\(2I=2\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2012}}\right)\)

\(2I=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2011}}\)

\(2I-I=\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{2}{2^{2011}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2012}}\right)\)

\(I=1-\frac{1}{1^{2012}}\)

\(\Rightarrow A=1+\left(1-\frac{1}{2^{2012}}\right)\)

\(\Rightarrow A=2-\frac{1}{2^{2012}}\)

Vậy \(A=2-\frac{1}{2^{2012}}\)