K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 6 2018

Giải:

\(\left(x-y+z\right)^2+\left(z-y\right)^2+2.\left(x-y+z\right).\left(y-z\right)\)

\(=\left(x-y+z\right)^2+2.\left(x-y+z\right).\left(y-z\right)+\left(z-y\right)^2\)

\(=\left(x-y+z\right)^2+2.\left(x-y+z\right).\left(y-z\right)+\left(y-z\right)^2\)

\(=\left(x-y+z+y-z\right)^2\)

\(=x^2\)

Vậy ...

24 tháng 8 2020

dấu = thứ nhất vs dấu = thứ 2 của bn giống nhau nha (lặp đi lặp lại à)

16 tháng 9 2019

Ta có: \(1+x^2=xy+yz+xz+x^2=\left(x+y\right)\left(x+z\right)\)

\(1+y^2=xy+yz+xz+y^2=\left(z+y\right)\left(x+y\right)\)

\(1+z^2=xy+yz+xz+z^2=\left(z+x\right)\left(z+y\right)\)

Thay vào biểu thức A, ta có bt sau:

\(A=x\sqrt{\frac{\left(y+z\right)\left(x+y\right)\left(x+z\right)\left(y+z\right)}{\left(x+y\right)\left(x+z\right)}}\)

\(+y\sqrt{\frac{\left(x+z\right)\left(y+z\right)\left(x+y\right)\left(x+z\right)}{\left(y+z\right)\left(x+y\right)}}\)

\(+z\sqrt{\frac{\left(x+y\right)\left(y+z\right)\left(x+z\right)\left(x+y\right)}{\left(x+z\right)\left(z+y\right)}}\)

\(=x\sqrt{\left(y+z\right)^2}+y\sqrt{\left(x+z\right)^2}+z\sqrt{\left(x+y\right)^2}\)

\(=x\left(y+z\right)+y\left(x+z\right)+z\left(x+y\right)\)(x,y,z dương)

\(=2\left(xy+xz+yz\right)=2.1=2\)

25 tháng 5 2017

vì \(x^2+y^2+z^2=1\)

\(\Rightarrow0\le x;y;z\le1\)

\(2P=2\left(xy+xz+yz\right)+x^2\left(y-z\right)^2+y^2\left(x-z\right)^2+z^2\left(x-y\right)^2-2\left(x^2+y^2+z^2\right)-2\)

\(2P-2=-\left(x-y\right)^2-\left(x-z\right)^2-\left(y-z\right)^2+x^2\left(y-z\right)^2+y^2\left(x-z\right)^2+z^2\left(x-y\right)^2\)

\(2P-2=\left(x^2-1\right)\left(y-z\right)^2+\left(y^2-1\right)\left(x-z\right)^2+\left(z^2-1\right)\left(x-y\right)^2\le0\)

\(2P-2\le0\)

\(2P\le2\)

\(P\le1\)

GTLN P là 1 khi x=y=z=\(\frac{\sqrt{3}}{3}\)

9 tháng 8 2020

tth_new_dep_trai_lai_lang_solo_SOS_Ji_Chen_tuoi_tom nhờ mình đăng hộ nha!

18 tháng 7 2016

Bài 32: 

a) P=  \(\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+4}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

      =   \(\frac{\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)+\left(\sqrt{4}+\sqrt{6}+\sqrt{8}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

      =   \(\frac{\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)+\sqrt{2}\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

       =   \(\frac{\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)\left(1+\sqrt{2}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

        =  \(1+\sqrt{2}\)

b) Có:  \(x^2-2y^2=xy\)

\(\Leftrightarrow x^2-y^2-y^2-xy=0\)

\(\Leftrightarrow\left(x-y\right)\left(x+y\right)-y\left(y+x\right)\)

\(\Leftrightarrow\left(x+y\right)\left(x-y-y\right)=0\)

\(\Leftrightarrow\left(x+y\right)\left(x-2y\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+y=0\\x-2y=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-y\\x=2y\end{cases}}}\)

Thay x=-y  ta có: Q=\(\frac{-y-y}{-y+y}\)=\(\frac{-2y}{0}\)(loại )

Thay x=2y ta có :   Q=\(\frac{2y-y}{2y+y}=\frac{y}{3y}=\frac{1}{3}\)

3 tháng 2 2020

\(M\left(x+y+z\right)=\left(z^2+y^2+z^2\right)+2+\frac{\left(x^2+1\right)\left(y+z\right)}{x}+\frac{\left(y^2+1\right)\left(z+x\right)}{y}+\frac{\left(z^2+1\right)\left(x+y\right)}{z}\)

\(=5+\frac{\left(x^2+1\right)\left(y+z\right)}{x}+\frac{\left(y^2+1\right)\left(z+x\right)}{y}+\frac{\left(z^2+1\right)\left(x+y\right)}{z}\)

\(\ge5+2\left(y+z\right)+2\left(z+x\right)+2\left(x+y\right)=5+4\left(x+y+z\right)\) ( Sử dụng BĐT Cô-si cho 2 số dương ý)

\(\Rightarrow M\ge\frac{5}{x+y+z}+4\)

Mặt khác: \(\left(x+y+z\right)^2\le\left(x^2+y^2+z^2\right)\left(1^2+1^2+1^2\right)=9\)

\(\Rightarrow x+y+z\le3\)

Do đó: \(M\ge\frac{5}{3}+4=\frac{17}{3}\)

\(M=\frac{17}{3}\Leftrightarrow x=y=z=1\)

\(\Rightarrow Min_A=\frac{17}{3}\)

3 tháng 2 2020

Bạn làm rõ dòng đầu tiên giúp mình nha!

7 tháng 6 2019

Ta có x,y,z là các số thực dương 

Khi đó : \(5\left(x^2+y^2+z^2\right)-9x\left(y+z\right)-18yz=0.\)

\(\Leftrightarrow5\frac{x^2}{\left(y+z\right)^2}+\frac{5\left(y^2+z^2\right)}{\left(y+z\right)^2}-\frac{9x}{y+z}-\frac{18yz}{\left(y+z\right)^2}=0\)

\(\Leftrightarrow5\left(\frac{x}{y+z}\right)^2-\frac{9x}{y+z}=\frac{18yz}{\left(y+z\right)^2}-\frac{5\left(y^2+z^2\right)}{\left(y+z\right)^2}\)

                                                \(\le\frac{\frac{18\left(y+z\right)^2}{4}}{\left(y+z\right)^2}-\frac{\frac{5\left(y+z\right)^2}{2}}{\left(y+z\right)^2}=\frac{18}{4}-\frac{5}{2}=2.\)

\(\Rightarrow5\left(\frac{x}{y+z}\right)^2-9.\frac{x}{y+z}\le2.\)

Đặt \(\frac{x}{y+z}=a>0\)ta được \(5a^2-9a-2\le0\)

\(\Leftrightarrow5a^2-10a+a-2\le0\Leftrightarrow\left(5a+1\right)\left(a-2\right)\le0\)

Dễ thấy  \(5a+1>0\)\(\Rightarrow a-2\le0\Leftrightarrow a\le2\Leftrightarrow\frac{x}{y+z}\le2.\)

Ta có: \(Q=\frac{2x-y-z}{y+z}=\frac{2x}{y+z}-1\le2.2-1=3\)

Dấu '=' xảy ra khi \(\hept{\begin{cases}y=z\\\frac{x}{y+z}=2\end{cases}\Leftrightarrow x=4y=4z}\)

Vậy Giá trị lớn nhất của \(Q=3\Leftrightarrow x=4y=4z.\)