Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 10n + 1 - 6.10n
= 10n . 10 - 6 . 10n
= 10n . (10 - 6)
= 10n . 4
b) 2n + 3 + 2n + 2 - 2n + 1 + 2n
= 2n . 23 + 2n . 22 - 2n . 2 + 2n . 1
= 2n . (8 + 4 - 2 + 1)
= 2n . 11
rút gọn biểu thức
a. 1 - sin2 2
b. (1+cos2) (1 - cos2)
c. sin4 2 + cos4 2 + 2sin2 2 cos2 2
giúp mình với
\(A=\frac{1}{2}+\frac{2}{2^2}+\frac{3}{2^3}+...+\frac{n}{2^2}+...+\frac{100}{2^{100}}\)
\(2A=2\left(\frac{1}{2}+\frac{2}{2^2}+\frac{3}{2^3}+...+\frac{100}{2^{100}}\right)=1+\frac{2}{2}+\frac{3}{2^2}+...+\frac{n-1}{2^n}+...+\frac{100}{2^{99}}\)
\(2A-A=A=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+....+\frac{1}{2^{99}}-\frac{100}{2^{100}}\)
Đặt \(B=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\)
\(2B=2+1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{98}}\)
\(\Rightarrow2B-B=B=2-\frac{1}{2^{99}}\)
\(\Rightarrow A=2-\frac{1}{2^{99}}-\frac{100}{2^{100}}< 2\)
\(B=\sin^6\alpha+\cos^6\alpha+3\sin^2\alpha.\cos^2\alpha\)
\(B=\left(\sin^2\alpha\right)^3+\left(\cos^2\alpha\right)^3+3\sin^2\alpha.\cos^2\alpha\)
\(B=\left(\sin^2\alpha+\cos^2\alpha\right)\left(\sin^4\alpha+\cos^4\alpha-\sin^2\alpha.\cos^2\alpha\right)+3\sin^2\alpha.\cos^2\alpha\)
\(B=\sin^4\alpha+\cos^4\alpha-\sin^2\alpha.\cos^2\alpha+3\sin^2\alpha.\cos^2\alpha\)(vì \(\sin^2\alpha+\cos^2\alpha=1\))
\(B=\left(\sin^2\alpha\right)^2+\left(\cos^2\alpha\right)^2+2.\sin^2\alpha.\cos^2\alpha\)
\(B=\left(\sin^2\alpha+\cos^2\alpha\right)^2=1\)(vì \(\sin^2\alpha+\cos^2\alpha=1\))
Vậy B = 1
2a=2(2^2+2^3+2^4+...+2^100)
2a=2^3+2^4+2^5+2^101
2a-a=(2^3+2^4+...+2^101)-(2^2+2^3+...+2^100)
a=2^101-2^2
còn lại tự tính nhé