Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=sin^210^o+sin^220^o+sin^230^o+sin^240^o+sin^250^o+sin^260^o+sin^270^o+sin^280^o\)
\(A=\left(sin^210^o+sin^280^o\right)+\left(sin^220^o+sin^270^o\right)+\left(sin^230^o+sin^260^o\right)+\left(sin^240^o+sin^250^o\right)\)
\(A=\left(sin^210^o+cos^210^o\right)+\left(sin^220^o+cos^220^o\right)+\left(sin^230^o+cos^230^o\right)+\left(sin^240^o+cos^240^o\right)\)
\(A=1+1+1+1\)
\(A=4\)
A=(sin220°+sin270°)+(sin230°+sin260°)
+(sin240°+sin250°)-tan245°
=(sin220°+cos220°)+(sin230°+cos230°)+(sin240°+cos240°)-1
=1+1+1-1=2
mình ko bt cách viết phân số nên đường gạch ngang mờ mờ mà các bạn nhìn là phân số nhé
A = ( sin2 10o + sin2 80o) + (sin2 20o + sin2 70o) + ...+ (sin240o + sin2 50o)
A = ( sin2 10o + cos2 10o) + (sin2 20o + cos2 20o) + ...+ (sin240o + cos2 40o)
A = 1 + 1 + 1 + 1 = 4 ( Vì ( sin2 a + cos2 a = 1 với mọi a)
Bài làm
A = ( sin2 10o + sin2 80o) + (sin2 20o + sin2 70o) + ...+ (sin240o + sin2 50o)
A = ( sin2 10o + cos2 10o) + (sin2 20o + cos2 20o) + ...+ (sin240o + cos2 40o)
A = 1 + 1 + 1 + 1 = 4
hok tốt
P=sin2200+sin2400+sin2450+sin2500+sin2700
đổi sin2500 thành cos2400,sin2700 thành cos2200 rồi thay vào ta được:
sin2200+cos2200+sin2400+cos2400+\(\left(\dfrac{\sqrt{2}}{2}\right)^2\)
=\(2+\dfrac{1}{2}=\dfrac{5}{2}=2,5\)