Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`@` `\text {Ans}`
`\downarrow`
`a)`
`P(x) =`\(3x^2+7+2x^4-3x^2-4-5x+2x^3\)
`= (3x^2 - 3x^2) + 2x^4 + 2x^3 - 5x + (7-4)`
`= 2x^4 + 2x^3 - 5x + 3`
`Q(x) =`\(3x^3+2x^2-x^4+x+x^3+4x-2+5x^4\)
`= (5x^4 - x^4) + (3x^3 + x^3) + 2x^2 + (x + 4x)- 2`
`= 4x^4 + 4x^3 + 2x^2 + 5x - 2`
`b)`
`P(-1) = 2*(-1)^4 + 2*(-1)^3 - 5*(-1) + 3`
`= 2*1 + 2*(-1) + 5 + 3`
`= 2 - 2 + 5 + 3`
`= 8`
___
`Q(0) = 4*0^4 + 4*0^3 + 2*0^2 + 5*0 - 2`
`= 4*0 + 4*0 + 2*0 + 5*0 - 2`
`= -2`
`c)`
`G(x) = P(x) + Q(x)`
`=> G(x) = 2x^4 + 2x^3 - 5x + 3 + 4x^4 + 4x^3 + 2x^2 + 5x - 2`
`= (2x^4 + 4x^4) + (2x^3 + 4x^3) + 2x^2 + (-5x + 5x) + (3 - 2)`
`= 6x^4 + 6x^3 + 2x^2 + 1`
`d)`
`G(x) = 6x^4 + 6x^3 + 2x^2 + 1`
Vì `x^4 \ge 0 AA x`
`x^2 \ge 0 AA x`
`=> 6x^4 + 2x^2 \ge 0 AA x`
`=> 6x^4 + 6x^3 + 2x^2 + 1 \ge 0`
`=> G(x)` luôn dương `AA` `x`
a) \(P\left(x\right)=2x^3-2x+x^2-x^3+3x+2\)\(=\left(2x^3-x^3\right)+x^2+\left(3x-2x\right)+2=x^3+x^2+x+2\)
\(Q\left(x\right)=4x^3-5x^2+3x-4x-3x^3+4x^2+1\)
Q(x) \(=\left(4x^3-3x^3\right)+\left(4x^2-5x^2\right)+\left(3x-4x\right)+1\)\(=x^3-x^2-x+1\)
b) \(P\left(x\right)+Q\left(x\right)=2x^3+3\); \(P\left(x\right)-Q\left(x\right)=2x^2+2x+1\)
a) Sắp xếp theo lũy thừa giảm dần
P(x)=x^5−3x^2+7x^4−9x^3+x^2−1/4x
=x^5+7x^4−9x^3−3x^2+x^2−1/4x
=x^5+7x^4−9x^3−2x^2−1/4x
Q(x)=5x^4−x^5+x^2−2x^3+3x^2−1/4
=−x^5+5x^4−2x^3+x^2+3x^2−1/4
=−x^5+5x^4−2x^3+4x^2−1/4
b)
P(x)+Q(x)
=(x^5+7x^4−9x^3−2x^2−1/4^x)+(−x^5+5x^4−2x^3+4x^2−1/4)
=x^5+7x^4−9x^3−2x^2−1/4x−x^5+5x^4−2x^3+4x^2−1/4
=(x^5−x^5)+(7x^4+5x^4)+(−9x^3−2x^3)+(−2x^2+4x^2)−1/4x−1/4
=12x^4−11x^3+2x^2−1/4x−1/4
P(x)−Q(x)
=(x^5+7x^4−9x^3−2x^2−1/4x)−(−x^5+5x^4−2x^3+4x^2−1/4)
=x^5+7x^4−9x^3−2x^2−1/4x+x^5−5x^4+2x^3−4x^2+1/4
=(x^5+x^5)+(7x^4−5x^4)+(−9x^3+2x^3)+(−2x^2−4x^2)−1/4x+1/4
=2x5+2x4−7x3−6x2−1/4x−1/4
c) Ta có
P(0)=0^5+7.0^4−9.0^3−2.0^2−1/4.0
⇒x=0là nghiệm của P(x).
Q(0)=−0^5+5.0^4−2.0^3+4.0^2−1/4=−1/4≠0
⇒x=0không phải là nghiệm của Q(x).
a: \(P\left(x\right)=3x^5-4x^4-2x^3+4x^2+5x+6\)
\(Q\left(x\right)=-x^5+2x^4-2x^3+3x^2-x+\dfrac{1}{4}\)
b: \(P\left(x\right)+Q\left(x\right)=2x^5-2x^4-4x^3+7x^2+4x+\dfrac{25}{4}\)
c: \(P\left(-1\right)=-3-4+2+4-5+6=0\)
Do đó: x=-1 là nghiệm của P(x)
\(Q\left(-1\right)=-\left(-1\right)+2-2\cdot\left(-1\right)+3-\left(-1\right)+\dfrac{1}{4}\)
\(=1+2+2+3+1+\dfrac{1}{4}=9.25>0\)
Do đó: x=-1 không là nghiệm của P(x)
a.
\(P\left(x\right)=-x^5+3x^3-4x^2+2x-7\)
\(Q\left(x\right)=-x^5+3x^3+2x+1\)
b.
\(A\left(x\right)=P\left(x\right)+Q\left(x\right)\)
\(A\left(x\right)=\left(-x^5+3x^3-4x^2+2x-7\right)+\left(-x^5+3x^3+2x+1\right)\)
\(A\left(x\right)=-2x^5+6x^3-4x^2+4x-6\)
\(B\left(x\right)=P\left(x\right)-Q\left(x\right)\)
\(B\left(x\right)=\left(-x^5+3x^3-4x^2+2x-7\right)-\left(-x^5+3x^3+2x+1\right)\)
\(B\left(x\right)=-4x^2-8\)
a) Ta có:
\(P\left(x\right)=x-2x^2+3x^5+x^4+x=3x^5+x^4-2x^2\)
\(Q\left(x\right)=3-2x-2x^2+x^4-3x^5-x^4+4x^2\)
\(=-3x^5+2x^2-2x+3\)
b) Ta có:
\(P\left(x\right)+Q\left(x\right)=3x^5+x^4-2x^2-3x^5+2x^2-2x+3\)
\(=x^4-2x+3\)
\(P\left(x\right)-Q\left(x\right)=3x^5+x^4-2x^2+3x^5-2x^2+2x-3\)
\(=6x^5+x^4-4x^2+2x-3\)
c) Ta có: \(P\left(0\right)=3.0^5+0^4-2.0^2=0\)
=> x = 0 là nghiệm của P(x)
Mà \(Q\left(0\right)=-3.0^5+2.0^2-2.0+3=3\)
=> x = 0 không là nghiệm của đa thức Q(x)
a)
Ta thay x=-1 vào P(x) và kiểm tra giá trị thu đc :
P(-1) = 3(-1)4 - 4(-1)2 + 2(-1) - 5
= 3(1) - 4(1) - 2 - 5
= 3 - 4 - 2 - 5
= -8
Vì giá trị P(-1) khác 0, nên x=-1 ko phải là nghiệm của P(x)
b) Q(x) = x2 + x6 - (1 - 3x4 + 2x + x6)
= x2 + x6 - 1 + 3x4 - 2x - x6
= -1 + 3x4 + x2 - 2x6
Thu gọn : Q(x) = -2x6 + 3x4 + x2 - 1
c)
+ Tính P(x)+Q(x):
P(x) + Q(x)
= (3x4 - 4x2 + 2x - 5) + (-2x6 + 3x4 + x2 - 1)
= -2x6 + (3x4 + 3x4) + (-4x2 + x2) + (2x - 5 - 1)
= -2x6 + 6x4 - 3x2 + 2x - 6
+ Tính Q(x)-P(x):
Q(x) - P(x)
= (-2x6 + 3x4 + x2 - 1) - (3x4 - 4x2 + 2x - 5)
= -2x6 + (3x4 - 3x4) + (x2 + 4x2) + (2x - 2x) + (-1 + 5)
= -2x6 + 5x2 + 4
Thay x=-1 vào P ta được:
P(-1)= 3(-1)⁴-4(-1)²+2(-1)-5 = - 8
Vậy x = -10 phải là nghiệm của P(x)
b) Q(x)= x²+x⁶-(1-3x⁴+2x+x⁶)
Q(x)= x²+x⁶-1+3x⁴-2x-x⁶= 3x⁴+x²-2x-1