K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
16 tháng 5 2018

Lời giải:

Đặt \(x^2=t(t\geq 0)\) thì pt trở thành:

\(t^2-2t-m+3=0(*)\)

Để pt ban đầu chỉ có hai nghiệm thì pt $(*)$ chỉ có thể có một nghiệm dương (>0). Từ đây xảy ra hai trường hợp. Một là $(*)$ có duy nhất một nghiệm kép dương. Hai là $(*)$ có hai nghiệm nhưng một nghiệm âm một nghiệm dương.

TH1: Nếu $(*)$ có duy nhất một nghiệm . Khi đó \(\Delta'=1-(-m+3)=0\Leftrightarrow m=2\). Thay vào \((*)\Rightarrow t^2-2t+1=0\Rightarrow t=1\Rightarrow x=\pm 1\) (thỏa mãn)

TH2: Nếu $(*)$ có hai nghiệm.

Hai nghiệm \(\Leftrightarrow \Delta'=1-(-m+3)>0\Leftrightarrow m>2\)

Theo định lý Viete thì để có duy nhất một nghiệm dương trong hai nghiệm thì \(t_1t_2=3-m< 0\Leftrightarrow m> 3\)

Vậy theo đáp án thì D là đáp án đúng. Còn nếu đầy đủ thì còn cả \(m>3\)

14 tháng 5 2019

câu c trên mạng có mà :v

14 tháng 5 2019

Gọi x1,x2 là hai nghiệm của pt (1) : x^2 - 97x + a = 0 và x3,x4 là 2 nghiệm của pt (2) : x^2 - x + b = 0 
Theo hệ thức Vi-ét : 
x1 + x2 = 97 và x1.x2 = a 
x3 + x4 = 1 và x3.x4 = b 
Theo đề bài : 
* x1 + x2 = x3^4 + x4^4 
<=> x1 + x2 = (x3^2 + x4^2)^2 - 2.(x3.x4)^2 
<=> x1 + x2 = [(x3 + x4)^2 - 2.x3.x4]^2 - 2(x3.x4)^2 
<=> 97 = (1 - 2b)^2 - 2b^2 
<=> 2b^2 - 4b - 96 = 0 (1) 
* x1.x2 = (x3.x4)^4 
<=> b^4 = a (2) 
Từ (1) được b = 8 hoặc b = -6 
Suy ra a = 4096 hoặc a = 1296 
Thử lại nhận a = 1296 
Nguồn: https://vn.answers.yahoo.com/question/index?qid=20130328075420AAV3DV4

12 tháng 3 2021

đẽ vãi

NV
23 tháng 6 2020

Để pt có 2 nghiệm \(x_1\le x_2< 2\) (ko yêu cầu phân biệt?)

\(\Leftrightarrow\left\{{}\begin{matrix}\Delta'=\left(m-1\right)^2+\left(m+1\right)>0\\\left(x_1-2\right)\left(x_2-2\right)>0\\\frac{x_1+x_2}{2}< 2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m^2-m+2>0\left(luôn-đúng\right)\\x_1x_2-2\left(x_1+x_2\right)+4>0\\x_1+x_2< 4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-\left(m+1\right)+4\left(m-1\right)+4>0\\-2\left(m-1\right)< 4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}3m-1>0\\-2m< 2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m>\frac{1}{3}\\m>-1\end{matrix}\right.\) \(\Rightarrow m>\frac{1}{3}\)

22 tháng 6 2020

Đúng đề đó bạn chitoivoi123

1.Cho phương trình: x2 - 2(m - 2)x + m2 -3m +5 = 0a) Giải phương trình với m = -2b) Tìm các giá trị của m để phương trình có một trong các nghiệm bằng -1c) Tìm các giá trị của m để phương trình trên có nghiệm kép2.Xác định m để mỗi cặp phương trình sau có nghiệm chunga) x2 + mx +2 = 0 và x2 +2x + m = 0b) x2 - (m+4)x + m +5 =0 và x2 - (m+2)x +m +1 = 03. Cho phương trình (m+1)x2 +4mx +4m - 1 =0a) Giải phương trình với m...
Đọc tiếp

1.Cho phương trình: x2 - 2(m - 2)x + m2 -3m +5 = 0

a) Giải phương trình với m = -2

b) Tìm các giá trị của m để phương trình có một trong các nghiệm bằng -1

c) Tìm các giá trị của m để phương trình trên có nghiệm kép

2.Xác định m để mỗi cặp phương trình sau có nghiệm chung

a) x2 + mx +2 = 0 và x2 +2x + m = 0

b) x2 - (m+4)x + m +5 =0 và x2 - (m+2)x +m +1 = 0

3. Cho phương trình (m+1)x2 +4mx +4m - 1 =0

a) Giải phương trình với m = - 2

b) Với giá trị nào của m thì phương trình có hai nghiệm phân biệt

c) Tìm m để phương trình có hai nghiệm thỏa mãn điều kiện x1 = - 2x2

4. Cho phương trình x2 - 2(m+4)x +m2 -8 =0

a) Tìm m để biểu thức A= x12 + x22 - x1 - x2 đạt giá trị nhỏ nhất

b) Tìm m để biểu thức B= x1 + x2 -3x1x2 đạt giá trị lớn nhất

c) Tìm m để biểu thức C= x12 + x22 - x1x2 đạt giá trị lớn nhất

Mong mọi người giúp mình, mình thực sự rất cần. Cảm ơn trước ạ. Làm được bài nào thì cmt ngay giúp mình ạ.

1
18 tháng 2 2021

Bài 1 : a, Thay m = -2 vào phương trình ta được : 

\(x^2+8x+4+6+5=0\Leftrightarrow x^2+8x+15=0\)

Ta có : \(\Delta=64-60=4>0\)

Vậy phương trình có 2 nghiệm phân biệt 

\(x_1=\frac{-8-2}{2}=-5;x_2=\frac{-8+2}{2}=-3\)

b, Đặt \(f\left(x\right)=x^2-2\left(m-2\right)x+m^2-3m+5=0\)

\(f\left(-1\right)=\left(-1\right)^2-2\left(m-2\right)\left(-1\right)+m^2-3m+5=0\)

\(1+2\left(m-2\right)+m^2-3m+5=0\)

\(6+2m-4+m^2-3m=0\)

\(2-m+m^2=0\)( giải delta nhé )

\(\Delta=\left(-1\right)^2-4.2=1-8< 0\)

Vậy phương trình vô nghiệm 

c, Để phương trình có nghiệm kép \(\Delta=0\)( tự giải :v )