Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) = (x-3)(x+3) +(x-3((x-3)
= (x-3)(x+3+x-3)
= 2x(x-3)
làm cho 1 câu thui
b) \(x^3-4x^2-12x+27=\left(x^3+27\right)-\left(4x^2+12x\right)\)
\(=\left(x+3\right)\left(x^2-3x+9\right)-4x\left(x+3\right)\)
\(=\left(x+3\right)\left(x^2-3x+9-4x\right)\)
\(=\left(x+3\right)\left(x^2-7x+9\right)\)
d) \(x^{16}-1=\left(x^4-1\right)\left(x^4+1\right)=\left(x^2-1\right)\left(x^2+1\right)\left(x^4+1\right)\)
a) x3 - x2 - 5x + 125
=(x3-6x2+25x)+(5x2-30x+125)
=x(x2-6x+25)+5(x2-6x+25)
=(x+5)(x2-6x+25)
b) x3 + 2x2 - 6x - 27
=x3+5x2+9-3x2-15x-27
=x(x2+5x+9)-3(x2+5x+9)
=(x-3)(x2+5x+9)
c) 12x3 + 4x2 - 27x - 9
=4x2(3x+1)-9(3x+1)
=(4x2-9)(3x+1)
=[(2x)2-32](3x+1)
=(2x-3)(2x+3)(3x+1)
a) \(x^3-x^2-5x+125\)
\(=\left(x^3+125\right)-\left(x^2+5x\right)\)
\(=\left(x+5\right)\left(x^2-5x+25\right)-x\left(x+5\right)\)
\(=\left(x+5\right)\left(x^2-5x+25-x\right)=\left(x+5\right)\left(x^2-6x+25\right)\)
b) \(x^3+2x^2-6x-27\)
\(=\left(x^3-27\right)+\left(2x^2-6x\right)\)
\(=\left(x-3\right)\left(x^2+3x+9\right)+2x\left(x-3\right)\)
\(=\left(x-3\right)\left(x^2+3x+9+2x\right)\)
\(=\left(x-3\right)\left(x^2+5x+9\right)\)
c) \(12x^3+4x^2-27x-9\)
\(=4x^2\left(3x+1\right)-9\left(3x+1\right)\)
\(=\left(3x-1\right)\left(4x^2-9\right)=\left(3x-1\right)\left(2x-3\right)\left(2x+3\right)\)
Ta có : x3 - 4x2 + 12x - 27
= (x3 - 27) - (4x2 - 12x)
= (x3 - 33) - 4x(x - 3)
= (x - 3)(x2 + 3x + 9) - 4x(x - 3)
= (x - 3) (x2 + 3x + 9 - 4x)
= (x - 3)(x2 - x + 9)
a) x^2 - 4 + ( x - 2 )^2
= ( x- 2 )(x + 2 ) + ( x- 2)^2
= ( x - 2 ) ( x + 2 + x - 2 )
= 2x (x-2)
b) x^3 - 2x^2 + x - xy^2
= x ( x^2 - 2x + 1 - y^2)
= x [ ( x - 1 )^2 - y^2 ]
= x(x - 1 - y)( x - 1 + y )
c) x^3 - 4x^2 - 12x + 27
= x^3 + 3x^2 - 7x^2 - 21x + 9x + 27
= x^2 ( x + 3 ) - 7x ( x+ 3 ) + 9(x + 3 )
Để hai lần nha
= ( x+ 3 )(x^2 - 7x + 9 )
\(x^2-4+\left(x-2\right)^2\)
\(=\left(x-2\right)\left(x+2\right)+\left(x-2\right)^2\)
\(=\left(x-2\right)\left(x+2+x-2\right)\)
\(=2x\left(x-2\right)\)
hk tốt
^^
a, x^2 -4+ (x-2)^2=(x-2)(x+2)+(x-2)^2=(x-2)(x+2+x-2)=(x-2)2x , b, x^3-2x^2+x-xy^2=x(x^2-2x+1-y^2)=x((x-1)^2-y^2)=x(x-1-y)(x-1+y) c,x^3-4x^2-4x^2-12x+27=(x^3+27)-(4x^2+12x)=(x+3)(x^2-3x+9)-4x(x+3)=(x+3)(x^2-7x+9) cách giải đó pn.......
a) x2 - 4 + (x - 2)2
\(=\left(x^2-4\right)+\left(x-2\right)^2\)
\(=\left(x^2-2^2\right)+\left(x-2\right)^2\)
\(=\left(x-2\right)\left(x+2\right)+\left(x-2\right)^2\)
\(=\left(x-2\right)\left[\left(x+2\right)+\left(x-2\right)\right]\)
\(=\left(x-2\right)\left(x+2+x-2\right)\)
\(=\left(x-2\right)2x\)
b) x3 - 2x2 + x - xy2
\(=x\left(x^2-2x+1-y^2\right)\)
\(=x\left[\left(x^2-2x+1\right)-y^2\right]\)
\(=x\left[\left(x-1\right)^2-y^2\right]\)
\(=x\left[\left(x-1-y\right)\left(x-1+y\right)\right]\)
\(=x\left(x-1-1\right)\left(x-1+y\right)\)
c) x3 - 4x2 - 12x + 27
\(=\left(x^3+27\right)-\left(4x^2+12x\right)\)
\(=\left(x^3+3^3\right)-\left(4x^2+12x\right)\)
\(=\left(x+3\right)\left(x^2-3x+9\right)-4x\left(x+3\right)\)
\(=\left(x+3\right)\left[\left(x^2-3x+9\right)-4x\right]\)
\(=\left(x+3\right)\left(x^2-3x+9-4x\right)\)
\(=\left(x+3\right)\left(x^2-7x+9\right)\)
b, \(x^3+2x^2+2x+1=\left(x^2+x+1\right)\left(x+1\right)\)
c, \(x^3-4x^2+12x-27=\left(x^2-x+9\right)\left(x-3\right)\)
d, \(x^4-2x^3+2x-1=\left(x-1\right)^3\left(x+1\right)\)
e, sai đề
a, \(\left(ab-1\right)^2+\left(a+b\right)^2=\left(a^2+1\right)\left(b^2+1\right)\)
b, \(x^3+2x^2+2x+1=\left(x+1\right)\left(x^2+x+1\right)\)
c, \(x^3-4x^2+12x-27=\left(x-3\right)\left(x^2-x+9\right)\)
d, \(x^4-2x^3+2x-1=\left(x-1\right)^3\left(x+1\right)\)
e, cho mình sửa đề xíu
\(x^4+2x^3+2x^2+2x+1=\left(x+1\right)^2\left(x^2+1\right)\)
\(x^4+2x^3+2x^2+2x+1\)
\(=\left(x^4+2x^3+x^2\right)+\left(x^2+2x+1\right)\)
\(=\left(x^2+x\right)^2+\left(x+1\right)^2\)
\(=x^2\left(x+1\right)^2+\left(x+1\right)^2\)
\(=\left(x+1\right)^2\left(x^2+1\right)\)
\(x^3+2x^2+x-4xy^2\)
\(=x\left(x^2+2x+1\right)-4xy^2\)
\(=x\left(x+1\right)^2-4xy^2\)
\(=x\left(\left(x+1\right)^2-4y^2\right)\)
\(=x\left(\left(x+1-2y\right)\left(x+1+2y\right)\right)\)
\(\text{x3+2x2+x−4xy2 =x(x2+2x+1)−4xy2 =x(x+1)2−4xy2 =x((x+1)2−4y2) =x((x+1−2y)(x+1+2y))}\)