Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B = (x + 3)(x - 1)(x - 5)(x + 15) + 64x2
B = x4 + 12x3 - 58x2 - 180x + 225 + 64x2
B = x4 + 12x3 + 6x2 - 180x + 225
(x + y)3 - 1 - 3xy(x + y - 1)
= x3 + 3x2y + 3xy2 + y3 - 1 - 3x2y - 3xy2 + 3xy
= x3 - 1 + 3xy
= x(x2 + 3y) - 1
k bt lm nx r :v
\(\left(x+y\right)^3-1-3xy\left(x+y-1\right) \)
\(=\left(x+y-1\right)\left[\left(x+y\right)^2+x+y+1\right]-3xy\left(x+y-1\right)\)
\(=\left(x+y-1\right)\left(x^2+2xy+y^2+x+y+1\right)-3xy\left(x+y-1\right)\)
\(=\left(x+y-1\right)\left(x^2-xy+y^2+x+y+1\right)\)
\(x^4+6x^3+11x^2+6x+1\)
\(=\left(x^4+6x^3+9x^2\right)+2\left(x^2+3x\right)+1\)
\(=\left(x^2+3x\right)^2+2\left(x^2+3x\right)+1\)
\(=\left(x^2+3x+1\right)^2\)
Chúc bạn học tốt.
(x2 + x + 2)(x2 + 9x + 18) - 28
= x4 + 10x3 + 29x2 + 36x + 36 - 28
= x4 + 10x3 + 29x2 + 36x + 8
\(x^2\left(y-z\right)+y^2\left(z-x\right)+z^2\left(x-y\right)=x^2\left(y-z\right)-y^2\left[\left(y-z\right)+\left(x-y\right)\right]+z^2\left(x-y\right)\)
\(=x^2\left(y-z\right)-y^2\left(y-z\right)-y^2\left(x-y\right)+z^2\left(x-y\right)\)
\(=\left(x^2-y^2\right)\left(y-z\right)-\left(y^2-z^2\right)\left(x-y\right)\)
\(=\left(x-y\right)\left(x+y\right)\left(y-z\right)-\left(y-z\right)\left(y+z\right)\left(x-y\right)\)
\(=\left(x-y\right)\left(y-z\right)\left(x+y-y-z\right)\)
\(=\left(x-y\right)\left(y-z\right)\left(x-z\right)\)
có 2 cách một là nhóm hạng tử hai là phương pháp hệ số bất định. tại nhiều bạn làm cách nhóm quá nên mình làm hệ số bất định nhé
x4 - 6x3 - 12x2 - 14x + 3
= (x2 + ax + b)(x2 + cx + d)
Tìm a, b, c, d thuộc Z
ta có (x2 + ax + b)(x2 + cx + d)
= x4 + cx3 + dx2 + ax3 + acx2 + axd + bx2 + bcx + bd
= x4 + (a + c)x3 + (b + d + ac)x2 + (ad+bc)x + bd
Đồng nhất hệ số ta có:
a + c = -6
b + d + ac = 12
ad + bc = -14
bd = 3
Nếu b = 1, d = 3, ta có \(\hept{\begin{cases}a+c=-6\\1+3+ac=-12\\3a+c=-14\end{cases}}\) => \(\hept{\begin{cases}a=-4\\c=-2\\4+\left(-4\right)\left(-2\right)=12\end{cases}}\)
=> a = -4, b=1, d=3, c = -2
vậy x4 - 6x3 + 12x2 - 14x + 3 = (x2 - 4x + 1)(x2 - 2x + 3)
\(x^3-4x^2-8x+8 \)
\(=x^3+2x^2-6x^2-12x+4x+8\)
\(=x^2\left(x+2\right)-6x\left(x+2\right)+4\left(x+2\right) \)
\(=\left(x+2\right)\left(x^2-6x+4\right) \)
\(2x^3-12x^2+17x-2\)
\(=2x^3-4x^2-8x^2+16x+x-2\)
\(=2x^2\left(x-2\right)-8x\left(x-2\right)+\left(x-2\right)\)
\(=\left(x-2\right)\left(2x^2-8x+1\right)\)
Ta có \(x^4+4=\left(x^2\right)^2+2^2=\left(x^2+2\right)^2-2.x^2.2=\left(x^2+2\right)^2-\left(2x\right)^2\)
\(=\left(x^2+2x+2\right)\left(x^2-2x+2\right)\)
Đối với dạng bài này thì thường ta sẽ phải tách hạng tử hoặc cũng có thể dùng hệ số bất định:
Mik chỉ giải phương p tách cho dễ hiểu ,còn phương p kia bạn tự tìm hiểu nhé
Ta có: x^4 - 8x + 63
= (x^2)^2 -(16x^2 + 16x^2)+(64-1) -8x
=(x^2)^2 +16x^2+64 -16x^2-8x-1
=((x^2)^2 + 2.8.x^2+ 8^2) - ((4x)^2 + 2. 4x.1+1)
= (x^2+8)^2 - (4x+1)^2
= (x^2+8-4x-1)(x^2+8+4x+1)
=(x^2-4x+7)(x^2+4x+9)
Phương pháp kia thì mạnh hơn nhưng hơi khó hiểu
Mai Thanh Xuân
\(x^4-8x+63\)
\(\Leftrightarrow x^4-9x-x+63\)
\(\Leftrightarrow\left(x^4-9x\right)-\left(x+63\right)\)
\(\Leftrightarrow9x\left(x^3+63\right)\)
Mình năm nay lớp 7 nên biết vài bước thôi ,,,, Mong bạn thông cảm