K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 12 2017

x^3+y^3+z^3-3xyz = 0

<=> (x+y+z).(x^2+y^2+z^2-xy-yz-zx) = 0

Mà x+y+z > 0 => x^2+y^2+z^2-xy-yz-zx = 0

<=> 2x^2+2y^2+2z^2-2xy-2yz-2zx = 0

<=> (x-y)^2+(y-z)^2+(z-x)^2 = 0

=> x-y=0;y-z=0;z-x=0

=> P = 0

k mk nha

29 tháng 7 2016

\(x^3+y^3+z^3-3xyz=\left(x+y\right)^3+z^3-3x^2y-3xy^2-3xyz.\)

\(=\left(x+y+z\right)\left(x^2+2xy+y^2-xz-yz+z^2\right)-3xy\left(x+y+z\right)\)

\(=\left(x+y+z\right)\left(x^2+y^2+z^2+2xy-xz-yz-3xy\right)\)

\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-xz-yz\right)\)

\(=\frac{1}{2}\left(x+y+z\right)\left(2x^2+2y^2+2z^2-2xy-2xz-2yz\right)\)

\(=\frac{1}{2}\left(x+y+z\right)\text{[}\left(x^2-2xy+y^2\right)+\left(y^2-2yz+z^2\right)+\left(z^2-2xz+x^2\right)\text{]}\)

\(=\frac{1}{2}\left(x+y+z\right)\text{[}\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\text{]}\left(\text{đ}pcm\right)\)

29 tháng 7 2016

Dùng biến đổi sau: \(a^3+b^3=\left(a+b\right)^3-3ab\left(a+b\right)\)

\(VT=z^3+\left(x+y\right)^3-3xy\left(x+y\right)-3xyz\)

\(=\left(x+y+z\right)^3-3z\left(x+y\right)\left(z+x+y\right)-3xy\left(x+y+z\right)\)

\(=\left(x+y+z\right)\left[\left(x+y+z\right)^2-3xy-3yz-3zx\right]\)

\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\)

\(=\frac{1}{2}\left(x+y+z\right)\left[\left(x^2-2xy+y^2\right)+\left(y^2-2yz+z^2\right)+\left(z^2-2zx+x^2\right)\right]\)

\(=\frac{1}{2}\left(x+y+z\right)\left[\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\right]\)

\(=VP\)

17 tháng 10 2016

x³ + y³ + z³ - 3xyz = (x+y)³ - 3xy(x-y) + z³ - 3xyz 
= [(x+y)³ + z³] - 3xy(x+y+z) 
= (x+y+z)³ - 3z(x+y)(x+y+z) - 3xy(x-y-z) 
= (x+y+z)[(x+y+z)² - 3z(x+y) - 3xy] 
= (x+y+z)(x² + y² + z² + 2xy + 2xz + 2yz - 3xz - 3yz - 3xy) 
= (x+y+z)(x² + y² + z² - xy - xz - yz). 
~~~~~~~~ 
Bài làm trên mình đã sử dụng hằng đẳng thức đáng nhớ sau: 
(a+b)³ = a³ + 3a²b + 3ab² + b³ = a³ + b³ + 3ab(a-b) 
=> a³ + b³ = (a+b)³ - 3ab(a-b). 
Chúc bạn học giỏi!

17 tháng 10 2016

cảm ơn bạn nhiều

7 tháng 7 2016

VT=\(x^3+y^3+z^3-3xyz=\left(x+y\right)^3+z^3-3x^2y-3xy^2-3xyz\)

\(=\left(x+y+z\right)\left[\left(x+y\right)^2-\left(x+y\right)z+z^2\right]-3xy.\left(x+y+z\right)\)

\(=\left(x+y\right)^2-\left(x+y\right).z+z^2-3xy\left(\text{vì }x+y+z=1\right)\)

\(=x^2+2xy+y^2-xz-yz+z^3-3xy\)

\(=x^2+y^2+z^2-xy-yz-xz\)

\(=\frac{1}{2}.\left(2x^2+2y^2+2z^2-2xy-2yz-2xz\right)\)

\(=\frac{1}{2}.\left[\left(x^2-2xy-y^2\right)+\left(y^2-2yz+z^2\right)+\left(x^2-2xz+z^2\right)\right]\)

\(=\frac{1}{2}.\left[\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\right]\)=VP

=>dpcm

7 tháng 7 2016

Ta có : \(x^3+y^3+z^3-3xyz=\left(x+y\right)^3+z^3-3xy\left(x+y\right)-3xyz\)

\(=x+y+z\left(x^2+y^2+z^2+2xy+xz+yz\right)-3xy\left(x+y+z\right)\)

\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-xz\right)\)

\(=x^2+y^2+z^2-xy-yz-xz=\frac{\left(x^2-2xy+y^2\right)+\left(y^2-2yz+z^2\right)+\left(z^2-2xz+x^2\right)}{2}=\frac{1}{2}\left[\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\right]\)

4 tháng 1 2020

Đặt \(\left(\frac{1}{x};\frac{1}{y};\frac{1}{z}\right)=\left(a;b;c\right)\Rightarrow ab+bc+ca=3\). Tìm Min:\(P=\Sigma_{cyc}\frac{a^3}{\left(b+2c\right)}\)

Auto làm nốt:3

16 tháng 1 2022

y8 nha

16 tháng 1 2022

Kết quả là ra y8 nha bạn 

17 tháng 8 2020

Ta có: 

\(3x^4+1=x^4+x^4+x^4+1\ge4\sqrt[4]{x^4.x^4.x^4.1}=4x^3\)

Tương tự: \(3y^4+1\ge4y^3\) ; \(3z^4+1\ge4z^3\)

=> \(3\left(x^4+y^4+z^4\right)+3\ge4\left(x^3+y^3+z^3\right)\) (1)

Thay vào:

\(A=x^2\left(x+y\right)+y^2\left(y+z\right)+z^2\left(z+x\right)\)

\(A=x^3+x^2y+y^3+y^2z+z^3+z^2x\)

\(A=x^3+y^3+z^3+\left(x^2y+y^2z+z^2x\right)\)

\(\le x^3+y^3+z^3+\left(\frac{x^3+x^3+y^3+y^3+y^3+z^3+z^3+z^3+x^3}{3}\right)\)

\(=2\left(x^3+y^3+z^3\right)\)

\(=\frac{1}{2}\left[4\left(x^3+y^3+z^3\right)\right]\le\frac{1}{2}\left[3\left(x^4+y^4+z^4\right)+3\right]\)

\(=\frac{1}{2}\left[3.3+3\right]=\frac{12}{2}=6\)

Dấu "=" xảy ra khi: \(x=y=z=1\)

Vậy Max(A) = 6 khi x = y = z = 1

27 tháng 10 2020

Bài 2: Ta có: x, y, z không âm và \(x+y+z=\frac{3}{2}\)nên \(0\le x\le\frac{3}{2}\Rightarrow2-x>0\)

Áp dụng bất đẳng thức AM - GM dạng \(ab\le\frac{\left(a+b\right)^2}{4}\), ta được: \(x+2xy+4xyz=x+4xy\left(z+\frac{1}{2}\right)\le x+4x.\frac{\left(y+z+\frac{1}{2}\right)^2}{4}=x+x\left(2-x\right)^2\)

Ta cần chứng minh \(x+x\left(2-x\right)^2\le2\Leftrightarrow\left(2-x\right)\left(x-1\right)^2\ge0\)*đúng*

Đẳng thức xảy ra khi \(\left(x,y,z\right)=\left(1,\frac{1}{2},0\right)\)

29 tháng 10 2020

Bài 3: Áp dụng đánh giá quen thuộc \(4ab\le\left(a+b\right)^2\), ta có: \(2\le\left(x+y\right)^3+4xy\le\left(x+y\right)^3+\left(x+y\right)^2\)

Đặt x + y = t thì ta được: \(t^3+t^2-2\ge0\Leftrightarrow\left(t-1\right)\left(t^2+2t+2\right)\ge0\Rightarrow t\ge1\)(dễ thấy \(t^2+2t+2>0\forall t\))

\(\Rightarrow x^2+y^2\ge\frac{\left(x+y\right)^2}{2}\ge\frac{1}{2}\)

\(P=3\left(x^4+y^4+x^2y^2\right)-2\left(x^2+y^2\right)+1=3\left[\frac{3}{4}\left(x^2+y^2\right)^2+\frac{1}{4}\left(x^2-y^2\right)^2\right]-2\left(x^2+y^2\right)+1\ge\frac{9}{4}\left(x^2+y^2\right)^2-2\left(x^2+y^2\right)+1\)\(=\frac{9}{4}\left[\left(x^2+y^2\right)^2+\frac{1}{4}\right]-2\left(x^2+y^2\right)+\frac{7}{16}\ge\frac{9}{4}.2\sqrt{\left(x^2+y^2\right)^2.\frac{1}{4}}-2\left(x^2+y^2\right)+\frac{7}{16}=\frac{9}{4}\left(x^2+y^2\right)-2\left(x^2+y^2\right)+\frac{7}{16}=\frac{1}{4}\left(x^2+y^2\right)+\frac{7}{16}\ge\frac{1}{8}+\frac{7}{16}=\frac{9}{16}\)Đẳng thức xảy ra khi x = y = 1/2