Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 2x + 2y - x2 - xy
= 2(x + y) + x(x + y)
= (x + y) (x + 2)
mk ko bít phân tích đúng ko đúng thì t i c k nhé!! 245433463463564564574675687687856856846865855476457
a)\(2x+2y-x^2-xy=2\left(x+y\right)-x\left(x+y\right)=\left(2-x\right)\left(x+y\right)\)
b)\(\left(x+3\right)^2-\left(2x-5\right)\left(x+3\right)\)
\(=\left(x+3\right)\left[\left(x+3\right)-\left(2x-5\right)\right]\)
\(=\left(x+3\right)\left(8-x\right)\)
c)\(\left(3x+2\right)^2+\left(3x-2\right)^2-2\left(9x^2-4\right)\)
\(=\left(3x+2\right)^2+\left(3x-2\right)^2-2\left(3x-2\right)^2\)
\(=\left(3x+2\right)\left[\left(3x+2\right)-\left(3x-2\right)\right]+\left(3x-2\right)\left[\left(3x-2\right)-\left(3x+2\right)\right]\)
\(=4\left(3x+2\right)-4\left(3x-2\right)\)
\(=4\left(3x+2-3x+2\right)\)
=4.4=16
\(=\left[\left(x+y\right)^3-1\right]-3xy\left(x+y-1\right)\)
\(=\left(x+y-1\right)\left[\left(x+y\right)^2+1+2\left(x+y\right)\right]-3xy\left(x+y-1\right)\)
\(=\left(x+y-1\right)\left(x^2+y^2+2xy+1+2x+2y-3xy\right)\)
\(=\left(x+y+1\right)\left(x^2+y^2-xy+1+2x+2y\right)\)
\(=\left(x+y-1\right)\left[\left(x^2+1+2x\right)\left(y^2-xy+2y\right)\right]\)
\(=\left(x+y-1\right)\left(x+1\right)^2\left(y-x+2\right)y\)
1/ \(x^2+x-90=\left(x^2-10x\right)+\left(9x-90\right)=x\left(x-10\right)+9\left(x-10\right)=\left(x-10\right)\left(x+9\right)\)
2/ \(2x^2+4xy+2y^2=\left(2x^2+2xy\right)+\left(2xy+2y^2\right)=2x\left(x+y\right)+2y\left(x+y\right)=\left(x+y\right)\left(2x+2y\right)\)
3/ \(2y^2-14y+24=2\left(y^2-7y+12\right)=2\left[\left(y^2-4y\right)+\left(12-3y\right)\right]=2\left[y\left(y-4\right)-3\left(y-4\right)\right]\)
\(=2\left(y-4\right)\left(y-3\right)\)
4/ \(x^8+x^4+1=\left(x^8+x^7+x^6\right)-\left(x^7+x^6+x^5\right)+\left(x^5+x^4+x^3\right)-\left(x^3+x^2+x\right)+\left(x^2+x+1\right)\)
\(=x^6\left(x^2+x+1\right)-x^5\left(x^2+x+1\right)+x^3\left(x^2+x+1\right)-x\left(x^2+x+1\right)+\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^6-x^5+x^3-x+1\right)\)
\(=\left(x^2+x+1\right)\left[\left(x^6-x^5+x^4\right)-\left(x^4-x^3+x^2\right)+\left(x^2-x+1\right)\right]\)
\(=\left(x^2+x+1\right)\left[x^4\left(x^2-x+1\right)\right]-x^2\left(x^2-x+1\right)+\left(x^2-x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^2-x+1\right)\left(x^4-x^2+1\right)\)
Bài 1 :
\(A=\left(x-1\right)\left(x-2\right)\left(x+7\right)\left(x+8\right)+8\)
\(A=\left[\left(x-1\right)\left(x+7\right)\right]\left[\left(x-2\right)\left(x+8\right)\right]+8\)
\(A=\left(x^2+6x-7\right)\left(x^2+6x-16\right)+8\)
Đặt \(a=x^2+6x-7\)
\(A=a\left(a-9\right)+8\)
\(A=a^2-9a+8\)
\(A=a^2-8a-a+8\)
\(A=a\left(a-8\right)-\left(a-8\right)\)
\(A=\left(a-8\right)\left(a-1\right)\)
Thay a vào là xong bạn :)
\(b.x^4+4x^2-5=x^4-x^2+5x^2-5\)
\(=x^2\left(x^2-1\right)+5\left(x^2-1\right)\)
\(=\left(x^2+5\right)\left(x^2-1\right)\)
\(=\left(x^2+5\right)\left(x-1\right)\left(x+1\right)\)
\(c.x^3-19x-30=x^3-25x+6x-30\)
\(=x\left(x-5\right)\left(x+5\right)+6\left(x-5\right)\)
\(=\left(x-5\right)\left(x^2+5x+6\right)\)
\(=\left(x-5\right)\left(x^2+2x+3x+6\right)\)
\(=\left(x-5\right)\left[x\left(x+2\right)+3\left(x+2\right)\right]\)
\(=\left(x-5\right)\left(x+2\right)\left(x+3\right)\)
Đề sai nhé .Sửu lại
\(x^2-4x^2y^2+4+4x\)
\(=\left(x^2+4x+4\right)-4x^2y^2\)
\(=\left(x+2\right)^2-\left(2xy\right)^2\)
\(=\left(x+2+2xy\right)\left(x+2-2xy\right)\)
e) Ta có: x4−2x3+2x−1x4−2x3+2x−1
=(x4−1)−2x(x2−1)=(x4−1)−2x(x2−1)
=(x2+1)(x−1)(x+1)−2x(x−1)(x+1)=(x2+1)(x−1)(x+1)−2x(x−1)(x+1)
=(x−1)(x+1)⋅(x2−2x+1)=(x−1)(x+1)⋅(x2−2x+1)
=(x+1)⋅(x−1)3=(x+1)⋅(x−1)3
h) Ta có: 3x2−3y2−2(x−y)23x2−3y2−2(x−y)2
=3(x2−y2)−2(x−y)2=3(x2−y2)−2(x−y)2
=3(x−y)(x+y)−2(x−y)2=3(x−y)(x+y)−2(x−y)2
=(x−y)(3x+3y−2x+2y)=(x−y)(3x+3y−2x+2y)
=(x−y)(x+5y)=(x−y)(x+5y)
Học hằng đẳng thức chưa vậy em :3
(x+2y-3)2 - 4(x+2y-3)+4
= ((x+2y-3)2 - 2.2(x+2y-3)+2^2
=((x+2y-3)-2)^2
Cậu hok hằng đẳng thức chưa vậy :))
\(\left(x+2y-3\right)^2-4\left(x+2y-3\right)+4\)
\(=\left(x+2y-3\right)^2-2.\left(x+2y-3\right).2+2^2\)
\(=\left[\left(x+2y-3\right)-2\right]^2\)
\(=\left(x+2y-5\right)^2\)