Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a)\) \(x^2-2x-4y^2-4y\)
\(=\)\(\left(x^2-2x+1\right)-\left(4y^2+4y+1\right)\)
\(=\)\(\left(x-1\right)^2-\left(2y+1\right)^2\)
\(=\)\(\left(x-1-2y-1\right)\left(x-1+2y+1\right)\)
\(=\)\(\left(x-2y-2\right)\left(x+2y\right)\)
\(=\)\(2\left(x-y\right)\left(x+2y\right)\)
Chúc bạn học tốt ~
a) Ta có x2 - 2x - 4y2 - 4y
= x2 - 2x + 1 - 4y2 - 4y - 1
= (x - 1)2 - (4y2 + 4y + 1)
= (x - 1)2 - (2y + 1)2
= (x - 1 - 2y - 1)(x - 1 + 2y + 1)
= (x - 2y - 1)(x + 2y)
a) Đặt a + b = x ; a - b = y. Khi đó:
\(\left(a+b\right)^3-\left(a-b\right)^3\)
\(\Leftrightarrow x^3-y^3\)
\(\Leftrightarrow\left[x-y\right]\left[x^2+xy+y^2\right]\)
Thế lại vào ta có:
\(\Leftrightarrow\left[\left(a+b\right)-\left(a-b\right)\right]\left[\left(a+b\right)^2+\left(a+b\right)\left(a-b\right)+\left(a-b\right)^2\right]\)
\(\Leftrightarrow\left[\left(a-a\right)+\left(b+b\right)\right]\left[\left(a^2+b^2+2ab\right)+\left(a^2-b^2\right)+\left(a^2+b^2-2ab\right)\right]\)
\(\Leftrightarrow2b\left[\left(a^2+a^2+a^2\right)+\left(b^2-b^2+b^2\right)+\left(2ab-2ab\right)\right]\)
\(\Leftrightarrow2b\left[3a^2+b^2\right]\)
Mik làm tuỳ theo mình piết thôi nhé
a) ( a + b )3- ( a - b )3= a3 + b3 - a3 - b3 = a3 - a3 + b3 - b3 = 0
b) tương tự như ở trên!!! Hơi khác một tí!!!
c) ( 6x - 1 )2 - ( 3x + 2 ) = ..........
\(\left(a+b\right)^3-\left(a-b\right)^3\)
\(=\left(a+b-a+b\right)\left(\left(a+b\right)^2+\left(a+b\right)\left(a-b\right)+\left(a-b\right)^2\right)\)
\(=2b\left(\left(a+b\right)^2+\left(a^2-b^2\right)+\left(a-b\right)^2\right)\)
\(\left(a+b\right)^3+\left(a-b\right)^3\)
\(=\left(a+b+a-b\right)\left(\left(a+b\right)^2-\left(a+b\right)\left(a-b\right)+\left(a-b\right)^2\right)\)
\(=2a\left(\left(a+b\right)^2-\left(a^2-b^2\right)+\left(a-b\right)^2\right)\)
a) (a+b)3 -(a-b)3 = a3 + 3a2b + 3ab2 +b3 - a3 + 3a2b - 3ab2 +b3
= 2a3 + 6a2b + 2b3
\(xy\left(x-y\right)+yz\left(y-z\right)+zx\left(z-x\right)=x^2y-xy^2+y^2z-yz^2+z^2z-zx^2=x^2\left(y-z\right)+y^2\left(z-x\right)+z^2\left(z-y\right)\)
\(x^2\left(y-z\right)-y^2\left(x-z\right)-z^2\left(y-z\right)=\left(y-z\right)\left(x-z\right)\left(x+z\right)-y^2\left(x-z\right)=\left(x-z\right)\left(xy-yz-zx-z^2-y^2\right)\)
t cx k bt có đúng hay k đâu nha, nhớ xem kĩ lại
a) Ta thấy x = 1 là nghiệm của \(f\left(x\right)=3x^3-x^2+2x-4\) nên \(f\left(x\right)\) sẽ có dạng \(f\left(x\right)=\left(x-1\right)\left(ax^2+bx+c\right)\)
Bằng cách chia f(x) cho x - 1 được các hệ số tương ứng : a = 3 , b = 2 , c =4
=> f(x) = (x-1)(3x2+2x+4)
b) Tương tự, ta cũng phân tích được : x3-100x2+50x+49=(x-1)(x2-99x-49)
Mình nghĩ vậy thôi .Sorry nha . Tại vì tìm x thì phải bằng bao nhiêu chứ
\(x^2+4x+3\)
\(=\left(x+1\right)\left(x+3\right)\)
\(2x^2+3x-5\)
\(\left(x-1\right)\left(x+\frac{5}{2}\right)\)
\(x^2\left(x+1\right)-\left(x+1\right)\left(3x+1\right)+7x-x^2\)
\(=x^3+x^2-3x^2-4x-1+7x-x^2\)
\(=x^3-3x^2+3x-1\)
\(=\left(x-1\right)^3\)
1.
a) \(\left(-2x^3\right)\)\(\left(x^2+5x-\frac{1}{2}\right)\) = \(-2x^5\)\(-10x^4\) \(+x^3\)
b) (\(6x^3-7x^2\)\(-x+2\))\(:\left(2x+1\right)\)=\(3x^2-5x+2\)
2.
a) 9x(3x-y) + 3y (y-3x)=9x(3x-y)-3y(3x-y)
= (9x-3y)(3x-y)
= 3(3x-y)(3x-y)
= 3(3x-y)^2
b) \(x^3-3x^2\)\(-9x+27\)= \(\left(x^3-3x^2\right)\)\(-\left(9x-27\right)\)
= \(x^2\left(x-3\right)\)\(-9\left(x-3\right)\)
= \(\left(x^2-9\right)\left(x-3\right)\)
= \(\left(x+3\right)\left(x-3\right)\left(x-3\right)\)
= \(\left(x+3\right)\left(x-3\right)^2\)
Bài 1 ) a ) \(\left(-2x^3\right)\left(x^2+5x-\frac{1}{2}\right)\)
\(=-2x^5-10x^4+x^3\)
b ) \(\left(6x^3-7x^2+x+2\right):\left(2x+1\right)\)
\(=3x^2-5x+2\)
2 ) a ) \(9x\left(3x-y\right)+3y\left(y-3x\right)\)
\(=9x\left(3x-y\right)-3y\left(3x-y\right)\)
\(=\left(3x-y\right)\left(9x-3y\right)\)
\(=3\left(3x-y\right)\left(x-y\right)\)
b ) \(x^3-3x^2-9x+27\)
\(=\left(x^3-3x^2\right)-\left(9x-27\right)\)
\(=x^2\left(x-3\right)-9\left(x-3\right)\)
\(=\left(x^2-9\right)\left(x-3\right)\)
\(=\left(x-3\right)\left(x+3\right)\left(x-3\right)\)
a) 2x + 2y - x2 - xy
= 2(x + y) + x(x + y)
= (x + y) (x + 2)
mk ko bít phân tích đúng ko đúng thì t i c k nhé!! 245433463463564564574675687687856856846865855476457
a)\(2x+2y-x^2-xy=2\left(x+y\right)-x\left(x+y\right)=\left(2-x\right)\left(x+y\right)\)
b)\(\left(x+3\right)^2-\left(2x-5\right)\left(x+3\right)\)
\(=\left(x+3\right)\left[\left(x+3\right)-\left(2x-5\right)\right]\)
\(=\left(x+3\right)\left(8-x\right)\)
c)\(\left(3x+2\right)^2+\left(3x-2\right)^2-2\left(9x^2-4\right)\)
\(=\left(3x+2\right)^2+\left(3x-2\right)^2-2\left(3x-2\right)^2\)
\(=\left(3x+2\right)\left[\left(3x+2\right)-\left(3x-2\right)\right]+\left(3x-2\right)\left[\left(3x-2\right)-\left(3x+2\right)\right]\)
\(=4\left(3x+2\right)-4\left(3x-2\right)\)
\(=4\left(3x+2-3x+2\right)\)
=4.4=16