K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 9 2020

a) \(A=5\left(x-y\right)+ax-ay=\left(a+5\right)\left(x-y\right)\)

b) \(B=a\left(x+y\right)-4x-4y=\left(x+y\right)\left(a-4\right)\)

c) \(C=xz+yz-5\left(x+y\right)=\left(x+y\right)\left(z-5\right)\)

d) \(D=a\left(x-y\right)+bx-by=\left(a+b\right)\left(x-y\right)\)

e) \(E=x\left(x+y\right)-5x-5y=\left(x-5\right)\left(x+y\right)\)

f) \(F=x^2-x-y^2-y=\left(x-y\right)\left(x+y\right)-\left(x+y\right)=\left(x+y\right)\left(x-y-1\right)\)

g) \(G=x^2-xy+x-y=x\left(x-y\right)+x-y=\left(x+1\right)\left(x-y\right)\)

8 tháng 9 2020

A = 5(x - y) + ax - ay = 5(x - y) + a(x - y) = (a + 5)(x - y)

B = a(x + y) - 4x - 4y = a(x + y) - 4(x + y) = (a - 4)(x + y)

C = xz + yz - 5(x + y) = z(x + y) - 5(x + y) = (z - 5)(x + y)

D = a(x - y) + bx - by = a(x - y) + b(x - y) = (a + b)(x - y)

E = x(x + y) - 5x - 5y = x(x + y) - 5(x + y) = (x - 5)(x + y)

F = x2 - x - y2 - y = (x2 - y2) - (x + y) = (x2 - xy + xy - y2) - (x + y) = [x(x - y) + y(x - y)] - (x + y) = (x - y)(x + y) - (x + y) = (x + y)(x - y - 1)

G = x2 - xy + x - y = x(x - y) + (x - y) = (x + 1)(x - y)                                                 

8 tháng 9 2020

A = xy + y - 2x - 2

= y( x + 1 ) - 2( x + 1 )

= ( x + 1 )( y - 2 )

B = x2 - 3x + xy - 3y

= x( x - 3 ) + y( x - 3 )

= ( x - 3 )( x + y )

C = 3x2 - 3xy - 5x + 5y

= 3x( x - y ) - 5( x - y )

= ( x - y )( 3x - 5 )

D = xy + 1 + x + y

= y( x + 1 ) + ( x + 1 )

= ( x + 1 )( y + 1 )

E = ax - bx + ab - x2

= ( ax - x2 ) + ( ab - bx )

= x( a - x ) + b( a - x )

= ( a - x )( x + b )

F = x2 + ab + ax + bx

= ( ax + x2 ) + ( ab + bx )

= x( a + x ) + b( a + x )

= ( a + x )( x + b )

G = a3 - a2x - ay + xy

= a2( a - x ) - y( a - x )

= ( a - x )( a2 - y )

Bonus : = ( a - x )[ a2 - ( √y )2 ]

             = ( a - x )( a - √y )( a + √y )

H = 2xy + 3z + 6y + xz

= ( 6y + 2xy ) + ( 3z + xz )

= 2y( 3 + x ) + z( 3 + x )

= ( 3 + x )( 2y + z )

8 tháng 9 2020

A = xy + y - 2x - 2 = y(x + 1) - 2(x + 1) = (y - 2)(x + !1

B = x2 - 3x + xy - 3y = x(x - 3) + y(x - 3) = (x + y)(x - 3)

C = 3x2 - 3xy - 5x + 5y = 3x(x - y) - 5(x - y) = (3x - 5)(x - y)

D = xy + 1 + x + y = xy + x + y + 1 = x(y + 1) + (y + 1) = (x + 1)(y + 1)

E = ax - bx + ab - x2 = ax - x2 + ab - bx = a(a - x) - b(a - x) = (a - b)(a - x)

F = x2 + ab + ax + bx = ab + ax + bx + x2 = a(b + x) + x(b + x) = (a + x)(b + x)

G = a3 - a2x - ay + xy = a2(a - x) - y(a - x) = (a2 - y)(a - x)

H = 2xy + 3z + 6y + xz = 2xy + 6y + 3z + xz = 2y(x + 3) + z(x + 3) = (2y + z)(x + 3)

12 tháng 10 2018

\(a,ax+by+ay+bx=\left(ax+ay\right)+\left(by+bx\right)=a\left(x+y\right)+b\left(x+y\right)=\left(a+b\right)\left(x+y\right)\)

\(b,x^2y+xy+x+1=xy\left(x+1\right)+\left(x+1\right)=\left(xy+1\right)\left(x+1\right)\)

\(c,x^2-ax-bx+ab=x\left(x-a\right)-b\left(x-a\right)=\left(x-b\right)\left(x-2\right)\)

\(d,x^2y+xy^2-x-y=xy\left(x+y\right)-\left(x+y\right)=\left(xy-1\right)\left(x+y\right)\)

12 tháng 10 2018

\(e,a\left(x^2+y\right)-b\left(x^2+y\right)=\left(a-b\right)\left(x^2+y\right)\)

\(f,x\left(a-2\right)-a\left(a-2\right)=\left(x-a\right)\left(a-2\right)\)

15 tháng 10 2017

a) ko bt làm

13 tháng 8 2018

a)  bạn ktra lại đề

b) \(x^2y+xy+x+1=xy\left(x+1\right)+\left(x+1\right)=\left(xy+1\right)\left(x+1\right)\)

c) \(ax+by+ay+bx=a\left(x+y\right)+b\left(x+y\right)=\left(a+b\right)\left(x+y\right)\)

d)  \(x^2-\left(a+b\right)x+ab=x^2-ax-bx+ab=x\left(x-a\right)-b\left(x-a\right)=\left(x-a\right)\left(x-b\right)\)

e)  \(x^2y+xy^2-x-y=xy\left(x+y\right)-\left(x+y\right)=\left(xy-1\right)\left(x+y\right)\)

f)  \(ax ^2+ay-bx^2-by=x^2\left(a-b\right)+y\left(a-b\right)=\left(a-b\right)\left(x^2+y\right)\)

30 tháng 9 2018

\(x^2y+xy+x+1\)

\(=xy\left(x+1\right)+\left(x+1\right)\)

\(=\left(x+1\right)\left(xy+1\right)\)

hk tốt

^^

5 tháng 10 2015

a) 

5x-5y+ax-ay = 5(x-y) +a(x-y) = (x-y)(5+a)

b) a^3 -a^2x-ay+xy = a^2(a-x) -y(a-x) = (a-x)(a^2-y)

c) xy(x+y) +yz(y+z) +xz(x+z) +2xyz = x^2.y+xy^2 +y^2.z+xz^2 +x^2.z+xz^2 +2xyz

= (x^2.y+x^2.z)+(xy^2+xz^2+2xyz)+(y^2.z+yz^2) = x^2(y+z) +x.(y+z)^2 +yz(y+z)

=(y+z)(x^2+x+yz)

25 tháng 7 2017

Bài 1 : 

a ) \(x^2-6x-y^2+9=\left(x^2-6x+9\right)-y^2=\left(x-3\right)^2-y^2=\left(x-3+y\right)\left(x-3-y\right)\)

b)  \(25-4x^2-4xy-y^2=5^2-\left(4x^2+4xy+y^2\right)=5^2-\left(2x+y\right)^2=\left(5+2x+y\right)\left(5-2x-y\right)\)

c)  \(x^2+2xy+y^2-xz-yz=\left(x+y\right)^2-z.\left(x+y\right)=\left(x+y\right)\left(x+y-z\right)\)

d)   \(x^2-4xy+4y^2-z^2+4tz-4t^2=\left(x^2-4xy+4y^2\right)-\left(z^2-4tz+4t^2\right)\)

\(=\left(x-2y\right)^2-\left(z-2t\right)^2=\left(x-2y+z-2t\right).\left(x-2y-z+2t\right)\)

BÀi 2 : 

a)   \(ax^2+cx^2-ay+ay^2-cy+cy^2=\left(ax^2+cx^2\right)-\left(ay+cy\right)+\left(ay^2+cy^2\right)\)

\(=x^2.\left(a+c\right)-y\left(a+c\right)+y^2.\left(a+c\right)=\left(a+c\right).\left(x^2-y+y^2\right)\)

b)   \(ax^2+ay^2-bx^2-by^2+b-a=\left(ax^2-bx^2\right)+\left(ay^2-by^2\right)-\left(a-b\right)\)

\(=x^2.\left(a-b\right)+y^2.\left(a-b\right)-\left(a-b\right)=\left(a-b\right)\left(x^2+y^2-1\right)\)

c)  \(ac^2-ad-bc^2+cd+bd-c^3=\left(ac^2-ad\right)+\left(cd+bd\right)-\left(bc^2+c^3\right)\)

\(=-a.\left(d-c^2\right)+d.\left(b+c\right)-c^2.\left(b+c\right)=\left(b+c\right).\left(d-c^2\right)-a\left(d-c^2\right)\)

\(=\left(b+c-a\right)\left(d-c^2\right)\)

BÀi 3 : 

a)  \(x.\left(x-5\right)-4x+20=0\) \(\Leftrightarrow x\left(x-5\right)-4\left(x-5\right)=0\) \(\Leftrightarrow\left(x-5\right)\left(x-4\right)=0\)

\(\Leftrightarrow\hept{\begin{cases}x-5=0\\x-4=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=5\\x=4\end{cases}}}\)

b)  \(x.\left(x+6\right)-7x-42=0\)\(\Leftrightarrow x.\left(x+6\right)-7.\left(x+6\right)=0\) \(\Leftrightarrow\left(x+6\right)\left(x-7\right)=0\)

\(\Leftrightarrow\hept{\begin{cases}x+6=0\\x-7=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-6\\x=7\end{cases}}}\)

c)   \(x^3-5x^2+x-5=0\) \(\Leftrightarrow x^2.\left(x-5\right)+\left(x-5\right)=0\) \(\Leftrightarrow\left(x-5\right)\left(x^2+1\right)\)

\(\Leftrightarrow\hept{\begin{cases}x^2+1=0\\x-5=0\end{cases}\Leftrightarrow\hept{\begin{cases}x^2=-1\left(KTM\right)\\x=5\end{cases}}}\)

d)   \(x^4-2x^3+10x^2-20x=0\) \(\Leftrightarrow x.\left(x^3-2x^2+10x-20\right)=0\)\(\Leftrightarrow x.\left[x^2.\left(x-2\right)+10.\left(x-2\right)\right]=0\)  \(\Leftrightarrow x.\left(x-2\right)\left(x^2+10=0\right)\)

\(\Leftrightarrow\hept{\begin{cases}x=0\\x-2=0\\x^2+10=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\\x=2\\x^2=-10\left(KTM\right)\end{cases}}}\)

1 tháng 7 2018

a) \(x^3-2x^2+2x-1^3\)

\(=x\left(x^2-2x+1\right)+x-1\)

\(=x\left(x-1\right)+\left(x-1\right)\)

\(=\left(x+1\right)\left(x-1\right)\)

b) \(x^2y+xy+x+1\)

\(=xy\left(x+1\right)+\left(x+1\right)\)

\(=\left(xy+1\right)\left(x+1\right)\)

c) \(ax+by+ay+bx\)

\(=a\left(x+y\right)+b\left(x+y\right)\)

\(=\left(a+b\right)\left(x+y\right)\)

d) \(x^2-\left(a+b\right)x+ab\)

\(=x^2-ax-bx+ab\)

\(=\left(x^2-ax\right)-\left(bx-ab\right)\)

\(=x\left(x-a\right)-b\left(x-a\right)\)

\(=\left(x-b\right)\left(x-a\right)\)

e) Ko biết làm

f) \(ax^2+ay-bx^2-by\)

\(=\left(ax^2+ay\right)-\left(bx^2+by\right)\)

\(=a\left(x^2+y\right)-b\left(x^2+y\right)\)

\(=\left(a-b\right)\left(x^2+y\right)\)

1 tháng 7 2018

a, x3 - 2x2 + 2x - 13

= x3 - 2x2 . 1+ 2x.12 - 13

= (x - 3 )3

11 tháng 10 2015

a)=x2-5x-2x+10=x(x-5)-2(x-5)=(x-5)(x-2)

b)=4x2-4x+x-1=4x(x-1)+(x-1)=(x-1)(4x+1)

c)=x2-4x+3x-12=x(x-4)+3(x-4)=(x-4)(x+3)

 

 

 

c) \(x^2+x-ax-a\)

\(=x\left(x+1\right)-a\left(x+1\right)\)

\(=\left(x+1\right)\left(x-a\right)\)

d) \(2xy-ax+x^2-2ay\)

\(=2y\left(x-a\right)+x\left(x-a\right)\)

\(=\left(x-a\right)\left(2y+x\right)\)

e) \(x^2y+xy^2-x-y\)

\(=xy\left(x+y\right)-\left(x+y\right)\)

\(=\left(x+y\right)\left(xy-1\right)\)

f) \(25-10x-4y^2+x^2\)

\(=\left(x^2-10x+25\right)-\left(2y\right)^2\)

\(=\left(x-5\right)^2-\left(2y\right)^2\)

\(=\left(x-5-2y\right)\left(x-5+2y\right)\)

g) \(x^3-6xy+9y^2-36\)

h) \(4x^2-9y^2+4x-6y\)

\(=\left(2x\right)^2-\left(3y\right)^2+2\left(2x-3y\right)\)

\(=\left(2x-3y\right)\left(2x+3y\right)+2\left(2x-3y\right)\)

\(=\left(2x-3y\right)\left(2x+3y+2\right)\)

k) \(-x^2+5x+2xy-5y-y^2\)

\(=-\left(x^2-2xy+y^2\right)+5\left(x-y\right)\)

\(=-\left(x-y\right)^2+5\left(x-y\right)\)

\(=\left(x-y\right)\left(-x+y+5\right)\)

i) \(4x^2-25y^2-6x+15y\)

\(=\left(2x\right)^2-\left(5y\right)^2-3\left(2x-5y\right)\)

\(=\left(2x-5y\right)\left(2x+5y\right)-3\left(2x-5y\right)\)

\(=\left(2x-5y\right)\left(2x+5y-3\right)\)

28 tháng 1 2020

a, \(x\left(y+z\right)^2+y\left(x+z\right)^2+z\left(x+y\right)^2+4xyz\)

\(=x\left(y+z\right)^2+x^2\left(y+z\right)+yz\left(y+z\right)\)

\(=\left(y+z\right)\left(xy+xz+z^2+yz\right)\)

\(=\left(y+z\right)\left[x\left(x+y\right)+z\left(x+y\right)\right]\)

\(=\left(y+z\right)\left(x+z\right)\left(x+y\right)\)

b, \(yz\left(y+z\right)+xz\left(z-x\right)-xy\left(x+y\right)\)

\(=yz\left(y+z\right)+xz^2-x^2z-x^2y-xy^2\)

\(=yz\left(y+z\right)-x\left(y+z\right)\left(y-z\right)-x^2\left(y+z\right)\)

\(=\left(y+z\right)\left(yz-xy+xz-x^2\right)\)

\(=\left(y+z\right)\left[y\left(z-x\right)+x\left(z-x\right)\right]\)

\(=\left(y+z\right)\left(y+x\right)\left(z-x\right)\)