K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 6 2015

x+ x7 +1=x8+x7+x6+x5+x4+x3+x2+x+1-x6-x5-x4-x3-x2-x

=x6(x2+x+1)+x3(x2+x+1)+(x2+x+1)-x4(x2+x+1)-x(x2+x+1)

=(x2+x+1)(x6+x3-x4-x)

=(x2+x+1)[x3(x3+1)-x(x3+1)]

=(x2+x+1)(x3+1)(x3-x)

=x(x2+x+1)(x+1)(x2-x+1)(x2-1)

=x(x2+x+1)(x+1)(x2-x+1)(x+1)(x-1)

=x(x2+x+1)(x+1)2(x2-x+1)(x-1)

 

1 tháng 11 2020

\(x^7+x^5+x^4+x^3+x^2+1\)

\(=x^7+x^6-x^6-x^5+2x^5+2x^4-x^4-x^3+2x^3+2x^2-x^2-x+x+1\)

\(=\left(x^7+x^6\right)-\left(x^6+x^5\right)+\left(2x^5+2x^4\right)-\left(x^4+x^3\right)+\left(2x^3+2x^2\right)-\left(x^2+x\right)+\left(x+1\right)\)

\(=x^6.\left(x+1\right)-x^5.\left(x+1\right)+2x^4\left(x+1\right)-x^3\left(x+1\right)+2x^2\left(x+1\right)-x\left(x+1\right)+\left(x+1\right)\)

\(=\left(x+1\right)\left(x^6-x^5+2x^4-x^3+2x^2-x+1\right)\)

12 tháng 4 2016

bạn dặt x^2+3x+5 là y nhé:

phương trình<=> 8y^2+7y-15

đến đó tìm được y tìm tiếp x nhé!

5 tháng 11 2017

\(x^{10}+x^8+x^6+x^4+x^2+1=x^8\left(x^2+1\right)+x^4\left(x^2+1\right)+\left(x^2+1\right)\)\(=\left(x^2+1\right)\left(x^8+x^4+1\right)=\left(x^2+1\right)\left(x^8-x^2+x^4+x^2+1\right)\)

\(=\left(x^2+1\right)[x^2\left(x-1\right)\left(x^3+1\right)\left(x^2+x+1\right)+\left(x^2+x+1\right)\left(x^2-x+1\right)]\)

\(=\left(x^2+1\right)\left(x^2+x+1\right)\left(x^6-x^5+x^3-x+1\right)\)

5 tháng 11 2017

= \(x^8\left(x^2+1\right)+x^4\left(x^2+1\right)+\left(x^2+1\right)\)

\(=\left(x^2+1\right)\left(x^8+x^4+1\right)\)

30 tháng 7 2015

3x(x+1)2-5x2(x+1)+7(x+1)

=(x+1)(-5x2+3x+7)

\(\left(x+1\right)^4+\left(x^2+x+1\right)^2\)

\(=\left(x+1\right)^4+x^2\cdot\left(x+1\right)^2+2x\left(x+1\right)+1\)

\(=\left(x+1\right)^2\cdot\left[\left(x+1\right)^2+x^2\right]+2x^2+2x+1\)

\(=\left(2x^2+2x+1\right)\left(x^2+2x+1+1\right)\)

\(=\left(2x^2+2x+1\right)\left(x^2+2x+2\right)\)

15 tháng 3 2018

\(3\left(x^4+x^2+1\right)-\left(x^2+x+1\right)^2=3[\left(x^4+2x^2+1\right)-x^2]-\left(x^2+x+1\right)^2\)\(=3[\left(x^2+1\right)^2-x^2]-\left(x^2+x+1\right)^2\)

\(=3\left(x^2-x+1\right)\left(x^2+x+1\right)-\left(x^2+x+1\right)^2\)

\(=\left(x^2+x+1\right)\left(2x^2-4x+2\right)=2\left(x-1\right)^2\left(x^2+x+1\right)\)