Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^8+x^7+1\)
\(=\left(x^8-x^6+x^5-x^3+x^2\right)+\left(x^7-x^5+x^4-x^2+x\right)+\left(x^6-x^4+x^3-x+1\right)\)
\(=x^2\left(x^6-x^4+x^3-x+1\right)+x\left(x^6-x^4+x^3-x+1\right)+\left(x^6-x^4+x^3-x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^6-x^4+x^3-x+1\right)\)
a, x8 + x7 + 1
=x2 (x6 - 1) + x (x6 - 1) +(x2 + x + 1)
= (x6 _ 1)(x2 + x) + (x2 + x +1)
= (x3 - 1)(x3 + 1)( x2 + x) + (x2 + x +1)
=(x - 1)(x2 + x +1)( x2 + x) + (x2 + x +1)
=(x2 + x +1)((x - 1)( x2 + x) +1)
=(x2 + x +1)(x3 + 1)
b, x5 - x4-1
c, x7+x5 + 1
d,x8 + x4 +1
Chú ý: Các đa thức có dạng: x3m+1+x3n+2+1 như x7+x2+1; x7+x5+1; x8 + x4 +1;
x5+x+1; x8+x+1 đều có nhân tử chung là x2 + x +1
Các phần còn lại tương tự nhé!!!
\(x^8+x^4+1\)
\(=x^8+2x^4+1-x^4\)
\(=\left(x^4+1\right)^2-x^4\)
\(=\left(x^4+x^2+1\right)\left(x^4-x^2+1\right)\)
\(=\left(x^2-x+1\right)\left(x^2+x+1\right)\left(x^4-x^2+1\right)\)
\(=\left(x^2-x+1\right)\left(x^2+x+1\right)\left(x^4-x^2+1\right)\)
b) x7 + x2 + 1 = (x7 – x) + (x2 + x + 1)
= x.(x6 – 1) + (x2 + x +1)
= x.(x3 - 1).(x3 +1) + (x2 + x +1)
= x.(x-1).(x2 + x +1).(x3 +1) + (x2 + x +1)
= (x2 + x +1).[x.(x-1).(x3 +1) + 1]
= (x2 + x +1).[(x2-x).(x3 +1) + 1]
= (x2 + x +1).(x5-x4 + x2 -x + 1
\(h\left(x\right)=x^7+x^5+1=x^7+x^6+x^5-x^6+1=x^5\left(x^2+x+1\right)-\left(x^3+1\right)\left(x^3-1\right)\)
\(=x^5\left(x^2+x+1\right)-\left(x^3+1\right)\left(x-1\right)\left(x^2+x+1\right)=\left(x^2+x+1\right)\left(x^5-x^4+x^3-x+1\right)\)
a) \(x^4+324=\left(x^2-6x+18\right)\left(x^2+6x+18\right)\)
c) \(x^{13}+x^5+1=\left(x^2+x+1\right)\left(x^{11}-x^{10}+x^8-x^7+x^5-x^4+x^3-x+1\right)\)
d) \(x^{11}+x+1=\left(x^2+x+1\right)\left(x^9-x^8+x^6-x^5+x^3-x^2+1\right)\)
e) \(x^8+3x^4+4=\left(x^4+x^2+2\right)\left(x^4-x^2+2\right)\)
= x^8 - x^7 + x^6 - x^5 + x^4 + x^7 - x^6 + x^5 - x^4 + x^3 + x^6 - x^5 + x^4 - x^3 + x^2 + x^5 - x^4 + x^3 - x^2 + x + x^4 - x^3 + x^2 - x + 1
= (x^8 - x^7 + x^6 - x^5 + x^4) + (x^7 - x^6 + x^5 - x^4 + x^3) + (x^6 - x^5 + x^4 - x^3 + x^2) + (x^5 - x^4 + x^3 - x^2 + x) + (x^4 - x^3 + x^2 - x + 1)
= x^4(x^4 - x^3 + x^2 - x + 1) + x^3(x^4 - x^3 + x^2 - x + 1) + x^2(x^4 - x^3 + x^2 - x + 1) + x(x^4 - x^3 + x^2 - x + 1) + (x^4 - x^3 + x^2 - x + 1)
= (x^4 + x^3 + x^2 + x + 1)(x^4 - x^3 + x^2 - x + 1)
2222222222222222222222222222222222222222222222222222222222223333333
x8 + x4 +1 = ( x8 + x7 + x6) - ( x7 + x6 + x5 ) + ( x5 + x4 + x3 ) - (x3 - x2 - x ) + ( x2 + x + 1)
= x6( x2 + x + 1 ) - x5( x2 + x + 1 ) + x3( x2 + x +1 ) - x( x2 + x +1 ) + ( x2 + x +1 )
= ( x2 + x +1 )( x6 - x5 + x3 - x + 1 )
\(x^8+x+1\)
\(=x^8+x^7+x^6-x^7-x^6-x^5+x^5+x^4+x^3-x^4-x^3-x^2+x^2+x+1\)
\(=x^6\left(x^2+x+1\right)-x^5\left(x^2+x+1\right)+x^3\left(x^2+x+1\right)-x^2\left(x^2+x+1\right)+x^2+x+1\)
\(=\left(x^2+x+1\right)\left(x^6-x^5+x^3-x^2+1\right)\)
1 ) \(x^5+x+1\)
\(=\left(x^5-x^2\right)+\left(x^2+x+1\right)\)
\(=x^2\left(x^3-1\right)+\left(x^2+x+1\right)\)
\(=x^2\left(x-1\right)\left(x^2+x+1\right)+\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^3-x^2+1\right)\)
b ) \(x^8+x^4+1\)
\(=\left(x^8+2x^4+1\right)-x^4\)
\(=\left(x^4+1\right)^2-\left(x^2\right)^2\)
\(=\left(x^4-x^2+1\right)\left(x^4+x^2+1\right)\)
Cảm ơn bạn