Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^8+3x^4+4\)
\(=\left(x^8-x^6+2x^4\right)+\left(x^6-x^4+2x^2\right)+\left(2x^4-2x^2+4\right)\)
\(=x^4\left(x^4-x^2+2\right)+x^2\left(x^4-x^2+2\right)+2\left(x^4-x^2+2\right)\)
\(=\left(x^4+x^2+2\right)\left(x^4-x^2+2\right)\)
\(4x^4+4x^3+5x^2+2x+1\)
\(=\left(4x^4+2x^3+2x^2\right)+\left(2x^3+x^2+x\right)+\left(2x^2+x+1\right)\)
\(=2x^2\left(2x^2+x+1\right)+x\left(2x^2+x+1\right)+\left(2x^2+x+1\right)\)
\(=\left(2x^2+x+1\right)^2\)
1 ) \(x^5+x+1\)
\(=\left(x^5-x^2\right)+\left(x^2+x+1\right)\)
\(=x^2\left(x^3-1\right)+\left(x^2+x+1\right)\)
\(=x^2\left(x-1\right)\left(x^2+x+1\right)+\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^3-x^2+1\right)\)
b ) \(x^8+x^4+1\)
\(=\left(x^8+2x^4+1\right)-x^4\)
\(=\left(x^4+1\right)^2-\left(x^2\right)^2\)
\(=\left(x^4-x^2+1\right)\left(x^4+x^2+1\right)\)
= x^8 - x^7 + x^6 - x^5 + x^4 + x^7 - x^6 + x^5 - x^4 + x^3 + x^6 - x^5 + x^4 - x^3 + x^2 + x^5 - x^4 + x^3 - x^2 + x + x^4 - x^3 + x^2 - x + 1
= (x^8 - x^7 + x^6 - x^5 + x^4) + (x^7 - x^6 + x^5 - x^4 + x^3) + (x^6 - x^5 + x^4 - x^3 + x^2) + (x^5 - x^4 + x^3 - x^2 + x) + (x^4 - x^3 + x^2 - x + 1)
= x^4(x^4 - x^3 + x^2 - x + 1) + x^3(x^4 - x^3 + x^2 - x + 1) + x^2(x^4 - x^3 + x^2 - x + 1) + x(x^4 - x^3 + x^2 - x + 1) + (x^4 - x^3 + x^2 - x + 1)
= (x^4 + x^3 + x^2 + x + 1)(x^4 - x^3 + x^2 - x + 1)
2222222222222222222222222222222222222222222222222222222222223333333
x8 + x4 +1 = (x8 + 2x4 + 1) - x4
= (x4 +1)2 - x4 = (x4 - x2 + 1)(x4 + x2 + 1)
x8+x4+1
=(x8+2x4+1)-x4
=(x4+1)2-(x2)2
=(x4+1-x2)(x4+1+x2)
=(x4+1-x2)(x4+2x2-x2+1)
=(x4+1-x2)[(x2+1)2-x2]
=(x4+1-x2)(x2-x+1)(x2+x+1)
x^8+x^4+1=x^8-x^2+x^4-x+x^2+x+1=x^2(x^6-1)+x(x^3-1)+x^2+x+1=x^2(x^3-1)(x^3+1)+x(x^3-1)+x^2+x+1=x^2(x^3+1)(x-1)(x^2+x+1)+x(x-1)(x^2+x+1)+x^2+x+1=(x^2+x+1)[x^2(x^3+1)(x-1)+x(x-1)+1)]
a) x8 + x + 1 = (x^2+x+1)*(x^6-x^5+x^3-x^2+1)
b) x^8 + 3x^4 + 4 = (x^4-x^2+2)*(x^4+x^2+2)
a, \(x^3-x^2-4\)
\(=x^3-2x^2+x^2-2x+2x-4\)
\(=x^2\left(x-2\right)+x\left(x-2\right)+2\left(x-2\right)\)
\(=\left(x-2\right)\left(x^2+x+2\right)\)
a) \(x^3-x^2-4\)
\(=x^3-2x^2+x^2-2x+2x-4\)
\(=x^2\left(x-2\right)+x\left(x-2\right)+2\left(x-2\right)\)
\(=\left(x-2\right)\left(x^2+x+2\right)\)
b) \(x^8-98x^4+1\)
\(=\left(x^4\right)^2+2\cdot x^4\cdot1+1^2-100x^4\)
\(=\left(x^4+1\right)^2-\left(10x^2\right)^2\)
\(=\left(x^4-10x^2+1\right)\left(x^4+10x^2+1\right)\)
x8 + x4 +1 = ( x8 + x7 + x6) - ( x7 + x6 + x5 ) + ( x5 + x4 + x3 ) - (x3 - x2 - x ) + ( x2 + x + 1)
= x6( x2 + x + 1 ) - x5( x2 + x + 1 ) + x3( x2 + x +1 ) - x( x2 + x +1 ) + ( x2 + x +1 )
= ( x2 + x +1 )( x6 - x5 + x3 - x + 1 )