Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(x2 + 2.x.3 + 32 - 1).(x2 + 2.x.4 + 16 - 1) - 24
=[(x+3)2 - 1]. [(x+4)2-1] -24
=(x+3+1)(x+3-1)(x+4+1)(x+4-1) - 24
=(x+4)(x+2)(x+5)(x-3) - 24
(x2+6x+8)(x2+8x+15)-24
<=>(x2+4x+2x+8)(x2+5x+3x+15)-24
<=> [x(x+4)+2(x+4)][x(x+5)+3(x+5)]-24
<=> (x+4)(x+2)(x+5)(x+3)-24
<=> (x+4)(x+3)(x+2)(x+5)-24
<=>(x2+7x+12)(x2+7x+10)
đặt t=x2+7x+11 ta có:
(t-1)(t+1)-24
<=> t2-1-24
<=>t2-25
<=>(t-5)(t+5)
thay t=x2+7x+11 vào ta có:
(x2+7x+11-5)(x2+7x+11+5)
<=>(x2+7x+6)(x2+7x+16)
\(3x^4-48\)
\(=\left(3x^4-6x^3\right)+\left(6x^3-12x^2\right)+\left(12x^2-24x\right)+\left(24x-48\right)\)
\(=3x^3\left(x-2\right)+6x^2\left(x-2\right)+12x\left(x-2\right)+24\left(x-2\right)\)
\(=\left(x-2\right)\left[\left(3x^3+6x^2\right)+\left(12x+24\right)\right]\)
\(=\left(x-2\right)\left[3x^2\left(x+2\right)+12\left(x+2\right)\right]\)
\(=\left(x-2\right)\left(x+2\right)\left(3x^2+12\right)\)
\(x^4-8x\)
\(=x\left(x^3-8\right)\)
\(=x\left[\left(x^3-2x^2\right)+\left(2x^2-4x\right)+\left(4x-8\right)\right]\)
\(=x\left[x^2\left(x-2\right)+2x\left(x-2\right)+4\left(x-2\right)\right]\)
\(=x\left(x-2\right)\left(x^2+2x+4\right)\)
1.\(x^3+6x^2+12xy+8=x^3+3.2x^2+3.2^2x+2^3=\left(x+2\right)^3\)
3.\(x^4+2x^3+x^2-y^2=\left(x^2\right)^2+2x^2.x+x^2-y^2\)\(=\left(x^2+x\right)^2-y^2=\left(x^2+x-y\right)\left(x^2+x+y\right)\)
k mình nha bn !!!!!!! cái 2 bn xem lại đề đi, rồi mình giải cho
dùng hằng đẳng thức để phân tích:
1) \(\left(a+b\right)^3+\left(a-b\right)^3=\left[\left(a+b\right)+\left(a-b\right)\right]\left[\left(a+b\right)^2-\left(a+b\right)\left(a-b\right)+\left(a-b\right)^2\right]\)
\(=\left(a+b+a-b\right)\left(a^2+2ab+b^2+b^2-a^2+a^2-2ab+b^2\right)\)
\(=2a\left(a^2+3b^2\right)\)
2)\(\left(a+b\right)^3-\left(a-b\right)^3=\left[\left(a+b\right)-\left(a-b\right)\right]\left[\left(a+b\right)^2+\left(a+b\right)\left(a-b\right)+\left(a-b\right)^2\right]\)
\(=\left(a+b+a-b\right)\left(a^2+2ab+b^2+a^2-b^2+a^2-2ab+b^2\right)\)
\(=2a\left(3a^2+b^2\right)\)
3)\(8x^3+12x^2y+6xy^2+y^3=\left(2x\right)^3+3.\left(2x\right)^2.y+3.2x.y^2+y^3=\left(2x+y\right)^3\)
\(a,x^2+6x+9\)
\(=\left(x+3\right)^2\)
\(b,10x-25-x^2\)
\(=-\left(x^2-10x+25\right)\)
\(=-\left(x-5\right)^2\)
\(c,8x^3-\frac{1}{8}\)
\(=8x^3-\left(\frac{1}{2}\right)^3\)
\(=\left(8x-\frac{1}{2}\right)\left(64x^2+4x+\frac{1}{4}\right)\)
\(d,8x^3+12x^2+6xy^2+y^3\)
\(=2\left(4x^3+6x^2+3xy^2+\frac{1}{2}y^3\right)\)
hok tốt!
ai tra loi dung minh cho