K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 2 2016

Giải quyết bằng toán này bằng cách đặt ẩn phụ. 

                                        \(--------------\)

Đặt  \(a+b=m\)   \(;\) \(a-b=n\)  thì  \(4ab=\left(a^2+2ab+b^2\right)-\left(a^2-2ab+b^2\right)=\left(a+b\right)^2-\left(a-b\right)^2\) , tức là  \(4ab=m^2-n^2\) và \(a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)=\left(a+b\right)\left[\left(a^2-2ab+b^2\right)+ab\right]=\left(a+b\right)\left[\left(a-b\right)^2+ab\right]\) ,

tức là  \(a^3+b^3=m\left(n^2+\frac{m^2-n^2}{4}\right)\)

Ta có:

\(A=\left(a+b+c\right)^3-4\left(a^3+b^3+c^3\right)-12abc\)

\(=\left(m+c\right)^3-4\left[m\left(n^2+\frac{m^2-n^2}{4}\right)+c^3\right]-3c\left(m^2-n^2\right)\)

\(=m^3+3m^2c+3mc^2+c^3-4mn^2-m^3+mn^2-4c^3-3m^2c+3n^2c\)

\(=3mc^2-3c^3-3mn^2+3n^2c\)

\(=3\left(mc^2-c^3-mn^2+n^2c\right)\)

\(=3\left[c^2\left(m-c\right)-n^2\left(m-c\right)\right]\)

\(=3\left(m-c\right)\left(c^2-n^2\right)=3\left(m-c\right)\left(c-n\right)\left(c+n\right)\)

Do đó,   \(A=3\left(a+b-c\right)\left(c-a+b\right)\left(c+a-b\right)\)

 

7 tháng 2 2016

-3*(c-b-a)*(c-b+a)*(c+b-a)

8 tháng 9 2014

a) x3-3x+2= x3-1-3x+3= (x-1)(x2+x+1)-3(x-1)= (x-1)(x2+x+1-3)= (x-1)(x2+x-2)

5 tháng 11 2014

c,x8+x7+x6+x5+x4+x3+x2+x+1

=(x8+x7+x6)+(x5+x4+x3)+(x2+x+1)

=x6(x2+x+1)+x3(x2+x+1)+(x2+x+1)

=(x2+x+1)(x6+x3+1)

4 tháng 10 2019

\(a\left(b^3-c^3\right)+b\left(c^3-a^3\right)+c\left(a^3-b^3\right)\)

\(=a\left(b^3-c^3\right)+b\left[\left(c^3-b^3\right)-\left(a^3-b^3\right)\right]+c\left(a^3-b^3\right)\)

\(=a\left(b^3-c^3\right)-b\left(b^3-c^3\right)-b\left(a^3-b^3\right)+c\left(a^3-b^3\right)\)

\(=\left(b^3-c^3\right)\left(a-b\right)-\left(a^3-b^3\right)\left(b-c\right)\)

\(=\left(b-c\right)\left(b^2+ac+c^2\right)\left(a-b\right)-\left(a-b\right)\left(a^2+ab+b^2\right)\left(b-c\right)\)

\(=\left(b-c\right)\left(a-b\right)\left(b^2+ac+c^2-a^2-ab-b^2\right)\)

21 tháng 7 2018

câu a bạn kiểm tra lại đề nhé

\(\left(a+b+c\right)^3-a^3-b^3-c^3\)

\(=\left(a+b\right)^3+3c\left(a+b\right)\left(a+b+c\right)+c^3-a^3-b^3-c^3\)

\(=a^3+b^3+c^3+3ab\left(a+b\right)+3c\left(a+b\right)\left(a+b+c\right)-a^3-b^3-c^3\)

\(=3\left(a+b\right)\left[ab+c\left(a+b+c\right)\right]\)

\(=3\left(a+b\right)\left(ab+ac+bc+c^2\right)\)

\(=3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)

21 tháng 7 2018

\(\left(a+b+c\right)^3-a^3-b^3-c^3\)

\(=a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)-a^3-b^3-c^3\)

\(=3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)

28 tháng 6 2016

(a+b+c)3-a3-b3-c3

=c3+(3a+3b)c2+(3b2+6ab+3a2)c+b3+3ab2+3a2b+a3-a3-b3-c3

=(3b+3a)c^2+(3b2+6ab+a2)c+3ab2+3a2

=3(b+a)(c+a)(c+b)

23 tháng 10 2019

Câu hỏi của Access_123 - Toán lớp 8 - Học toán với OnlineMath