Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi P là biểu thức phải phân tích, ta có
P = a(b + c)^2(b - c) + b(c + a)^2(c - a) - c(a + b)^2[(b - c) + (c - a)]
= a(b + c)^2(b - c) + b(c + a)^2(c - a) - c(a + b)^2(b - c) - c(a + b)^2(c - a)
= [a(b + c)^2(b - c) - c(a + b)^2(b - c)]+ [b(c + a)^2(c - a) - c(a + b)^2(c - a)]
= (b - c)[a(b + c)^2 - c(a + b)^2] + (c - a)[b(c + a)^2 - c(a + b)^2]
= (b - c)(ab^2 + ac^2 - ca^2 - cb^2) + (c - a)(bc^2 + ba^2 - ca^2 - cb^2)
= (b - c)[ac(c - a) - b^2(c - a)] + (c - a)[a^2(b - c) - bc(b - c)]
= (b - c)(c - a)(ac - b^2) + (c - a)(b - c)(a^2 - bc)
= (b - c)(c - a)(ac - b^2 + a^2 - bc)
= (b - c)(c - a)[(a^2 - b^2) + (ac - bc)]
= (b - c)(c - a)[(a - b)(a + b) + c(a - b)]
= (b - c)(c - a)(a - b)(a + b + c)
= (a - b)(b - c)(c - a)(a + b + c).
Vậy P = (a - b)(b - c)(c - a)(a + b + c).
\(\left(a+b\right)\left(a^2-b^2\right)+\left(b+c\right)\left(b^2-c^2\right)+\left(c+a\right)\left(c^2-a^2\right)\)
\(=\left(a+b\right)\left(a^2-b^2\right)-\left(b+c\right)\left(a^2-b^2\right)-\left(b+c\right)\left(c^2-a^2\right)+\left(a+c\right)\left(c^2-a^2\right)\)
\(=\left(a^2-b^2\right)\left(a+b-b-c\right)-\left(c^2-a^2\right)\left(b+c-c-a\right)\)
\(=\left(a-b\right)\left(a+b\right)\left(a-c\right)-\left(c-a\right)\left(c+a\right)\left(b-a\right)\)
\(=\left(a-b\right)\left(a-c\right)\left(a+b-c-a\right)\)
\(=\left(a-b\right)\left(a-c\right)\left(b-c\right)\)
\(a\left(b-c\right)^2+b\left(c-a\right)^2+c\left(a-b\right)^2+8abc\)
\(=a\left(b^2-2bc+c^2\right)+b\left(c^2-2ac+a^2\right)+c\left(a^2-2ab+b^2\right)+8abc\)
\(=ab^2-2abc+ac^2+bc^2-2abc+ba^2+ca^2-2abc+cb^2+8abc\)
\(=ab^2+ac^2+bc^2+ba^2+ca^2+cb^2+2abc\)
\(=\left(ac^2+bc^2\right)+\left(ab^2+ba^2\right)+\left(ca^2+cb^2+2abc\right)\)
\(=c^2\left(a+b\right)+ab\left(a+b\right)+c\left(a^2+b^2+2ab\right)\)
\(=c^2\left(a+b\right)+ab\left(a+b\right)+c\left(a+b\right)^2\)
\(=\left(a+b\right)\left[c^2+ab+c\left(a+b\right)\right]=\left(a+b\right)\left(c^2+ab+ca+bc\right)\)
\(=\left(a+b\right)\left[\left(c^2+ca\right)+\left(ab+bc\right)\right]=\left(a+b\right)\left[c\left(c+a\right)+b\left(a+c\right)\right]\)
\(=\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
a2(b-c)+b2(c-a)+c2(a-b)= a2b - a2c + b2c - b2a + c2a - c2b
=a2b + b2c - a2c - c2b - b2a + c2a
=b(a2 + bc) - c(a2 + bc) - a(b2 - c2)
=(a2 + bc)(b - c) - a(b - c)(b + c) =(b - c)[a2 + bc - a(b + c)]
=(b-c)(a2-ab -ac +bc)= (b-c)[a(a-b) - c(a-b)] = (b - c)(a - b)(a - c)
Ta có: a2(b−c)+b2(c−a)+c2(a−b)a2(b−c)+b2(c−a)+c2(a−b)
= a2(b−c)+b2[(c−b)+(b−a)]+c2(a−b)a2(b−c)+b2[(c−b)+(b−a)]+c2(a−b)
= a2(b−c)−b2(b−c)−b2(a−b)+c2(a−b)a2(b−c)−b2(b−c)−b2(a−b)+c2(a−b)
= (b−c)(a2−b2)−(a−b)(b2−c2)(b−c)(a2−b2)−(a−b)(b2−c2)
= (b−c)(a−b)(a+b)−(a−b)(b−c)(b+c)(b−c)(a−b)(a+b)−(a−b)(b−c)(b+c)
= (a−b)(b−c)(a+b−b−c)(a−b)(b−c)(a+b−b−c)
= (a−b)(b−c)(a−c)
Thay a bởi b ta có A= a2(a−c)+a2(c−a)+0=a2(a−c+c−a)=0a2(a−c)+a2(c−a)+0=a2(a−c+c−a)=0 Vậy A chia hết a-b . Tương tự A chia hết b-c và c-a
Vậy A = k(a-b)(b-c)(c-a) ( k là số nguyên)
Vì đẳng thức của A luôn đúng nên ko mất tính tổng quát nếu chọn a=2 b=1 c=0 ta đc 4.1 + 1(-2) + 0 = k.1.1.(-2) vậy -2 = -2k vậy k= -1
Vậy P = -(a-b)(b-c)(c-a) = (a-b)(a-c)(b-c)
-c2(a - b) + b2(a - c) - a2(b - c)
= -c2a + c2b + b2a - b2c - a2b + a2c
= (a2c - c2a + c2b - b2c) + (b2a - a2b)
= c(a2 - ac + bc - b2) + ab(b - a)
= c2[(a - b)(a + b) - c(a - b)] - ab(a - b)
= c2(a - b)(a + b - c) - ab(a - b)
= (a - b)(c2a + c2b - c3 - ab)
a(b+c)2(b-c)+b(c+a)2(c-a)+c(a+b)2(a-b)
=(-a)c3-abc2+ab2c+ab3+bc3+abc2+(-a2)bc+(-a3)b+(-b3)c-ab2c+a2bc+a3c
=(b-a)c3+(a3-b3)c+ab3+(-a3)b
=(b-a)(c-a)(c-b)(c+b+a)
cách khác dễ hiểu hơn chỉ cần thay a,b,c =x,y,z
(x-y)3+(y-z)3+(z-x)3
=(x-y+y-z)[(x-y)2-(x-y)(y-z)+(y-z)2]+(z-x)3
=(x-z)[(x-y)2-(x-y)(y-z)+(y-z)2-(z-x)2]
=(x-z)[(x-y)(x-y-y+z)+(y-z+z-x)(y-z-z+x)]
=(x-z)(x-y)(x-2y+z-y+2z-x)
=3(x-z)(x-y)(z-y)