K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 10 2021

\(x^2-y^2+4-4x\)

\(=\left(x-2\right)^2-y^2\)

\(=\left(x-y-2\right)\left(x-2+y\right)\)

22 tháng 10 2021

giải thích chi tiết giúp e ạ.e cảm ơn

19 tháng 10 2020

a) 5x3 - 40 = 5( x3 - 8 ) = 5( x - 2 )( x2 + 2x + 4 )

b) x2z + 4xyz + 4y2z = z( x2 + 4xy + 4y2 ) = z( x + 2y )2

c) 4x2 - y2 - 6x + 3y = ( 4x2 - y2 ) - ( 6x - 3y ) = ( 2x - y )( 2x + y ) - 3( 2x - y ) = ( 2x - y )( 2x + y - 3 )

d) x2 + 2x - 4y2 + 1 = ( x2 + 2x + 1 ) - 4y2 = ( x + 1 )2 - ( 2y )2 = ( x - 2y + 1 )( x + 2y + 1 )

e) 3x2 - 3y2 - 12x + 12y = 3( x2 - y2 - 4x + 4y ) = 3[ ( x2 - y2 ) - ( 4x - 4y ) ] = 3[ ( x - y )( x + y ) - 4( x - y ) ] = 3( x - y )( x + y - 4 )

f) x3 + 5x2 + 4x + 20 = x2( x + 5 ) + 4( x + 5 ) = ( x + 5 )( x2 + 4 )

g) x3 - x2 - 25x + 25 = x2( x - 1 ) - 25( x - 1 ) = ( x - 1 )( x2 - 25 ) = ( x - 1 )( x - 5 )( x + 5 )

19 tháng 10 2020

a) \(5x^3-40=5\left(x^3-8\right)=5\left(x-2\right)\left(x^2+2x+4\right)\)

b) \(x^2z+4xyz+4y^2z=z\left(x^2+4xy+4y^2\right)=z\left(x+2y\right)^2\)

c) \(4x^2-y^2-6x+3y=\left(4x^2-y^2\right)-\left(6x-3y\right)\)

\(=\left(2x-y\right)\left(2x+y\right)-3\left(2x-y\right)=\left(2x-y\right)\left(2x+y-3\right)\)

d) \(x^2+2x-4y^2+1=x^2+2x+1-4y^2\)

\(=\left(x+1\right)^2-4y^2=\left(x+2y+1\right)\left(x-2y+1\right)\)

e) \(3x^2-3y^2-12x+12y=3\left(x^2-y^2-4x+4y\right)\)

\(=3\left[\left(x^2-y^2\right)-\left(4x-4y\right)\right]=3\left[\left(x-y\right)\left(x+y\right)-4\left(x-y\right)\right]\)

\(=3\left(x-y\right)\left(x+y+4\right)\)

f) \(x^3+5x^2+4x+20=\left(x^3+5x^2\right)+\left(4x+20\right)\)

\(=x^2.\left(x+5\right)+4\left(x+5\right)=\left(x^2+4\right)\left(x+5\right)\)

g) \(x^3-x^2-25x+25=\left(x^3-x^2\right)-\left(25x-25\right)\)

\(=x^2\left(x-1\right)-25\left(x-1\right)=\left(x-1\right)\left(x^2-25\right)\)

\(=\left(x-1\right)\left(x-5\right)\left(x+5\right)\)

24 tháng 9 2016

4x2 -6x= 2x(2x-3)

b) 3x3 -6x2y -24xy + 12x\(3x\left(x^2-2xy-8y+4x\right)\)

c) x2 -25 + y2 + 2xy\(=x^2+2xy+y^2-25\)\(=\left(x+y\right)^2-5^2\)

=>\(\left(x+y+5\right)\left(x+y-5\right)\)

2 tháng 8 2016

c, x4+6x3+11x2+6x+1
=x4+6x3+9x2+2x2+6x+1
=x4+9x2+1+6x3+2x2+6x
=(x2)2+(3x)2+12+2.x2.3x+2.x2.1+2.3x.1       (1)
Áp dụng hằng đẳng thức (a+b+c)2=a2+b2+c2+2ab+2ac+2bc
=> (1)=(x2+3x+1)2

2 tháng 8 2016

Câu a nhé bạn:
a,   3x2−22xy−4x+8y+7y2+1
=3x2-21xy-xy-3x-x+7y+y+7y2+1
=(3x2−21xy−3x)−(xy-7y2-y)−(x-7y-1)
=3x(x−7y−1)−y(x−7y−1)−(x−7y−1)
=(3x−y−1)(x−7y−1)

22 tháng 12 2017

1) 3x2y+6xy+3y= 3y.(x2+2x+1) = 3y.(x+1)2

2) 12x-4x2-9+a2 = a2-(4x2-12x+9)= a2-(2x-3)2= (a+2x-3).(a-2x+3)

3) x3-7x-6 = x3-2x2+2x2-4x-3x+6 = x2.(x-2)+2x.(x-2)-3.(x-2)= (x-2).(x2+2x-3) = (x-2).(x2+x-3x-3)= (x-2).(x+1).(x-3)

\(a)\)

\(4x^2-y^2+2x+y\)

\(=\left(4x^2-y^2\right)+\left(2x+y\right)\)

\(=\left(2x-y\right)\left(2x+y\right)+\left(2x+y\right)\)

\(=\left(2x+y\right)\left(2x-y+1\right)\)

\(b)\)

\(x^3+2x^2-6x-27\)

\(=x^3+5x^2+9x-3x^2-15x-27\)

\(=x\left(x^2+5x+9\right)-3\left(x^2+5x-9\right)\)

\(=\left(x-3\right)\left(x^2+5-9\right)\)

\(c)\)

\(12x^3+4x^2-27x-9\)

\(=\left(12x^3+4x^2\right)-\left(27x+9\right)\)

\(=4x^2\left(3x+1\right)-9\left(3x+1\right)\)

\(=\left(3x+1\right)\left(4x^2-9\right)\)

\(=\left(3x+1\right)[\left(2x\right)^2-3^2]\)

\(=\left(3x+1\right)\left(2x-3\right)\left(2x+3\right)\)

\(d)\)

\(16x^2+4x-y^2+y^2\)

\(=16x^2+4x\)

\(4x\left(4x+1\right)\)

8 tháng 10 2019

\(a,4x^4-8x^3+4x^2\)

\(=4x^2\cdot\left(x^2-2x+1\right)\)

\(=4x^2\cdot\left(x-1\right)^2\)

\(b,x^2-y^2+5\cdot\left(y-x\right)\)

\(=\left(x-y\right)\cdot\left(x+y\right)-5\cdot\left(x-y\right)\)

\(=\left(x-y\right)\cdot\left(x+y-5\right)\)

\(c,3x^2-6xy+3y^2-12z^2\)

\(=3\cdot\left(x^2-2xy+y^2-4x^2\right)\)

\(=3\cdot\left[\left(x-y\right)^2-\left(2x\right)^2\right]\)

\(=3\cdot\left(x-y-2x\right)\cdot\left(x-y+2x\right)\)

21 tháng 10 2018

a)\(6x^2-9xy\)

\(=3x\left(2x-3y\right)\)

b)\(x^2-y^2-3x+3y\)

\(=\left(x-y\right)\left(x+y\right)-3\left(x-y\right)\)

\(=\left(x-y\right)\left(x+y-3\right)\)

21 tháng 10 2018

c)\(x^4-8x^2-9\)

\(=x^4+x^2-9x^2-9\)

\(=x^2\left(x^2+1\right)-9\left(x^2+1\right)\)

\(=\left(x^2-9\right)\left(x^2+1\right)\)

\(=\left(x+3\right)\left(x-3\right)\left(x^2+1\right)\)

d)\(x^4-4\left(x^2+5\right)-25\)

\(=\left(x^2-5\right)\left(x^2+5\right)-4\left(x^2+5\right)\)

\(=\left(x^2+5\right)\left(x^2-5-4\right)\)

\(=\left(x^2+5\right)\left(x^2-9\right)\)

\(=\left(x^2+5\right)\left(x-3\right)\left(x+3\right)\)