Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,\(x^2y-4y=y\left(x^2-4\right)=y\left(x-2\right)\left(x+2\right)\)
b,\(x^2-y^2-2x+1=\left(x^2-2x+1\right)-y^2\)
\(=\left(x-1\right)^2-y^2\)
\(=\left(x-y+1\right)\left(x-y-1\right)\)
c,\(5x^2+5xy-x-y=5x\left(x+y\right)-\left(x+y\right)\)
\(=\left(5x-1\right)\left(x+y\right)\)
x2y - 4y = y( x2 - 4 ) = y( x - 2 )( x + 2 )
x2 - y2 - 2x + 1 = ( x2 - 2x + 1 ) - y2 = ( x - 1 )2 - y2 = ( x - 1 - y )( x - 1 + y )
5x2 + 5xy - x - y = ( 5x2 + 5xy ) - ( x + y ) = 5x( x + y ) - ( x + y ) = ( x + y )( 5x - 1 )
a, \(x^3-6x^2+9x\)
\(=x\left(x^2-6x+9\right)\)
\(=x \left(x-3\right)\)
Câu b, c cũng tượng tự nha bn , dễ mà
#hoc_tot#
b) \(x^2-2xy+3x-6y=x\left(x-2y\right)+3\left(x-2y\right)=\left(x-2y\right)\left(x+3\right)\)
c)\(x^2-8x+7=x^2-x-7x+7=x\left(x-1\right)-7\left(x-1\right)=\left(x-1\right)\left(x-7\right)\)
a)\(x^3-6x^2+9x=x\left(x^2-2\cdot x\cdot3+3^2\right)=x\left(x-3\right)^2\)
~ Chúc bạn học tốt ~
a) 5x2 - 5xy - 3x + 3y
= 5x.(x - y) - 3.(x - y)
= (x - y).(5x - 3)
b) x3 - 2x2 - x + 2
= x2.(x - 2) - (x - 2)
= (x - 2).(x2 - 1)
= (x - 2).(x - 1).(x + 1)
a/ 5x2-5xy-3x+3y
=5x.(x-y)-3(x-y)
=(5x-3).(x-y)
b/ x3-2x2-x+2
=x2.(x-2)-(x-2)
=(x2-1).(x-2)
=(x-1).(x+1).(x-2)
\(x^2-3x+2\)
\(=x^2-x-2x+2\)
\(=x\left(x-1\right)-2\left(x-1\right)\)
\(=\left(x-1\right).\left(x-2\right)\)
Học tốt nhé
\(x^2+6x-y^2+9\)
\(=\left(x^2+6x+9\right)-y^2\)
\(=\left(x+3\right)^2-y^2\)
\(=\left(x+3-y\right)\left(x+3+y\right)\)
Bài 1:
a, x2-3xy-10y2
=x2+2xy-5xy-10y2
=(x2+2xy)-(5xy+10y2)
=x(x+2y)-5y(x+2y)
=(x+2y)(x-5y)
b, 2x2-5x-7
=2x2+2x-7x-7
=(2x2+2x)-(7x+7)
=2x(x+1)-7(x+1)
=(x+1)(2x-7)
Bài 2:
a, x(x-2)-x+2=0
<=>x(x-2)-(x-2)=0
<=>(x-2)(x-1)=0
<=>\(\orbr{\begin{cases}x-2=0\\x-1=0\end{cases}}\)<=>\(\orbr{\begin{cases}x=2\\x=1\end{cases}}\)
b, x2(x2+1)-x2-1=0
<=>x2(x2+1)-(x2+1)=0
<=>(x2+1)(x2-1)=0
<=>x2+1=0 hoặc x2-1=0
1, x2+1=0 2, x2-1=0
<=>x2= -1(loại) <=>x2=1
<=>x=1 hoặc x= -1
c, 5x(x-3)2-5(x-1)3+15(x+2)(x-2)=5
<=>5x(x-3)2-5(x-1)3+15(x2-4)=5
<=>5x(x2-6x+9)-5(x3-3x2+3x-1)+15x2-60=5
<=>5x3-30x2+45x-5x3+15x2-15x+5+15x2-60=5
<=>30x-55=5
<=>30x=55+5
<=>30x=60
<=>x=2
d, (x+2)(3-4x)=x2+4x+4
<=>(x+2)(3-4x)=(x+2)2
<=>(x+2)(3-4x)-(x+2)2=0
<=>(x+2)(3-4x-x-2)=0
<=>(x+2)(1-5x)=0
<=>\(\orbr{\begin{cases}x+2=0\\1-5x=0\end{cases}}\)<=>\(\orbr{\begin{cases}x=-2\\-5x=-1\end{cases}}\)<=>\(\orbr{\begin{cases}x=-2\\x=\frac{-1}{-5}\end{cases}}\)<=>\(\orbr{\begin{cases}x=-2\\x=\frac{1}{5}\end{cases}}\)
Bài 3:
a, Sắp xếp lại: x3+4x2-5x-20
Thực hiện phép chia ta được kết quả là x2-5 dư 0
b, Sau khi thực hiện phép chia ta được :
Để đa thức x3-3x2+5x+a chia hết cho đa thức x-3 thì a+15=0
=>a= -15
câu này gửi rồi mà tôi lm rồi đó Câu hỏi của nguyen thi diem quynh - Toán lớp 8 - Học toán với OnlineMath
a. 1+6x-6x2-x3
=(1-x3)+(6x-6x2)
=(1-x)(1+x+x2)+6x(1-x)
=(1-x)(1+x+x2+6x)
=(1-x)(1+7x+x2)
b. x3-2x-4
=x3-4x+2x-4
=x(x2-4)+2(x-2)
=x(x-2)(x+2)+2(x-2)
=(x2+2x+2)(x-2)
Ủng hộ mk nhak ^_-
a ) ( x2 + 2x + 5 )( x2 + 2x + 3 ) - 8
= ( x2 + 2x + 5 )[ ( x2 + 2x + 5 ) - 2 ] - 8
= ( x2 + 2x + 5 )2 - 2 . ( x2 + 2x + 5 ) + 1 - 9
= ( x2 + 2x + 5 - 1 )2 - 9
= ( x2 + 2x + 4 )2 - 33
= ( x2 + 2x + 4 - 3 )( x2 + 2x + 4 + 3 )
= ( x2 + 2x + 1 )( x2 + 2x + 7 )
b ) ( x2 + 2x )( x2 + 2x - 2 ) - 3
= ( x2 + 2x )[ ( x2 + 2x ) - 2 ] - 3
= ( x2 + 2x )2 - 2 . ( x2 + 2x ) + 1 - 4
= ( x2 + 2x - 1 )2 - 22
= ( x2 + 2x - 1 - 2 )( x2 + 2x - 1 + 2 )
= ( x2 + 2x - 3 )( x2 + 2x + 1 )
= ( x2 + 2x - 3 )( x + 1 )2
trả lời :
- \(\left(x^2+2x+5\right)\left(x^2+2x+3\right)\)
Đặt: \(x^2+2x+5=t\Rightarrow x^2+2x+3=t+2\),ta có:
\(t\left(t+2\right)-8\)
\(=t^2+2t-8\)
\(=t^2+4t-2t-8\)
\(=t\left(t+4\right)-2\left(t+4\right)\)
\(=\left(t+4\right)\left(t-2\right)\)
Thay vào cách đặt , ta có:
\(\left(x^2+2x+5+4\right)\left(x^2+2x+5-2\right)\)
\(=\left(x^2+2x+9\right)\left(x^2+2x+3\right)\)
\(=\left(x^2+2x+9\right)\left(x^2+3x-x+3\right)\)
\(=\left(x^2+2x+9\right)\left(x+3\right)\left(x-1\right)\)
- \(\left(x^2+2x\right)\left(x^2+2x-2\right)-3\)
Đặt : \(x^2+2x=t\Rightarrow\left(x^2+2x-2\right)=t-2\),ta có:
\(t\left(t-2\right)-3\)
\(=t^2-2t-3\)
\(=t^2-3t+t-3\)
\(=t\left(t-3\right)+\left(t-3\right)\)
\(=\left(t-3\right)\left(t+1\right)\)
Thay vào cách đặt, ta có:
\(\left(x^2+2x-3\right)\left(x^2+2x+1\right)\)
\(=\left(x^2+3x-x-3\right)\left(x+1\right)^2\)
\(=\left(x+3\right)\left(x-1\right)\left(x+1^2\right)\)
#hok tốt #
a, x2-5xy+2x-10y = (x2 + 2x)-(5xy+10y)
= x(x+2)-5y(x+2)
= (x+2)(x-5y)
b, x2-5x+4 = x2- x - 4x +4
= (x2-x)-(4x-4)
=x(x-1)-4(x-4)
=(x-1)(x-4)
\(a,x^2-5xy+2x-10y\)
\(=\left(x^2-5xy\right)+\left(2x-10y\right)\)
\(=x\left(x-5y\right)+2\left(x-5y\right)\)
\(=\left(x-5y\right)\left(x+2\right)\)
\(b,x^2-5x+4\)
\(=x^2-4x-x+4\)
\(=x\left(x-4\right)-\left(x-4\right)\)
\(=\left(x-1\right)\left(x-4\right)\)