K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 9 2020

x2 + y2 - 3x - 3y + 2xy

= ( x2 + 2xy + y2 ) - ( 3x + 3y )

= ( x + y )2 - 3( x + y )

= ( x + y )( x + y - 3 )

b) ( x2 - 4x )2 - 2( x - 2 )2 - 7 

= ( x2 - 4x )2 - 2( x2 - 4x + 4 ) - 7 (*)

Đặt t = x2 - 4x

(*) <=> t2 - 2( t + 4 ) - 7

       = t2 - 2t - 8 - 7

       = t2 - 2t - 15

       = t2 + 3t - 5t - 15

       = t( t + 3 ) - 5( t + 3 )

       = ( t + 3 )( t - 5 )

       = ( x2 - 4x + 3 )( x2 - 4x - 5 ) 

       = ( x2 - x - 3x + 3 )( x2 + x - 5x - 5 )

       = [ x( x - 1 ) - 3( x - 1 ) ][ x( x + 1 ) - 5( x + 1 ) ]

       = ( x - 1 )( x - 3 )( x + 1 )( x - 5 )

19 tháng 9 2020

a) Ta có: \(x^2+y^2-3x-3y+2xy\)

        \(=\left[\left(x^2+y^2+2xy\right)-2\left(x+y\right)+1\right]-\left(x+y+1\right)\)

        \(=\left[\left(x+y\right)^2-2\left(x+y\right)+1\right]-\left(x+y+1\right)\)

        \(=\left(x+y-1\right)^2-\left(x+y+1\right)\)

        \(=\left(x+y-1\right)^2-\left(\sqrt{x+y+1}\right)^2\)

        \(=\left(x+y-1+\sqrt{x+y+1}\right)\left(x+y-1-\sqrt{x+y+1}\right)\)

a) \(A=x^2-2xy+y^2+3x-3y-4\)

\(=\left(x-y\right)^2-1+3x-3y-3\)

\(=\left(x-y-1\right)\left(x-y+1\right)+3\left(x-y-1\right)\)

\(=\left(x-y-1\right)\left(x-y+1+3\right)\)

\(=\left(x-y-1\right)\left(x-y+4\right)\)

18 tháng 2 2020

Bài 2 :

a) \(\left(5x^2y-8xy^2+y^3\right)\left(2x^3+x^2y-3y^2\right)\)

\(=10x^5y+5x^4y^2-15x^2y^3-16x^4y^2-8x^3y^3+24xy^4+2x^3y^3+x^2y^4-3y^5\)

\(=10x^5y-11x^4y^2-6x^3y^3+x^2y^4-15x^2y^3+24xy^4-3y^5\)

9 tháng 10 2016

\(\left(2x-y\right)\left(x-y\right)-\left(3y-4x\right)^2+\left(y-2x\right)\left(2y-3x\right)\)

=(2x-y)(x-y)-(2x-y)(2y-3x)-(4x-3y)2

=(2x-3y)(x-y-2y+3x)-(4x-3y)2

=(2x-3y)(4x-3y)-(4x-3y)2

=(4x-3y)(2x-3y-4x+3y)

=(4x-3y))(-2x)

1 tháng 10 2017

a)\(a\left(b^3-c^3\right)+b\left(c^3-a^3\right)+c\left(a^3-b^3\right)\)

\(=a\left(b^3-c^3\right)-b\text{[}\left(b^3-c^3\right)+\left(a^3-b^3\right)\text{]}+c\left(a^3-b^3\right)\)

\(=a\left(b^3-c^3\right)-b\left(b^3-c^3\right)-b\left(a^3-b^3\right)+c\left(a^3-b^3\right)\)

\(=\left(a-b\right)\left(b^3-c^3\right)-\left(b-c\right)\left(a^3-b^3\right)\)

\(=\left(a-b\right)\left(b-c\right)\left(b^2+bc+c^2\right)-\left(b-c\right)\left(a-b\right)\left(a^2+ab+b^2\right)\)

\(=\left(a-b\right)\left(b-c\right)\left(bc+c^2-a^2-ab\right)\)

\(=\left(a-b\right)\left(b-c\right)\left(c-a\right)\left(a+b+c\right)\)

1a) (x - 2y) (x2 - 2xy + y2)

= (x - 2y) (x - y)2

= x2 - xy - 2xy + 2y2

= (x2 - xy) - (2xy - 2y2)

= x (x - y) - 2y (x - y)

= (x - y) (x - 2y)

2a) x (x - 3) - y (3 - x)

= x (x - 3) + y (x - 3)

= (x - 3) (x + y)

b) 3x2 - 5x - 3xy + 5y

= (3x2 - 3xy) - (5x - 5y)

= 3x (x - y) - 5 (x - y)

= (x - y) (3x - 5)

3) 12x (3 - 4x) + 7 (4x - 3) = 0

12x (3 - 4x) - 7 (3 - 4x) = 0

(3 - 4x) (12x - 7) = 0

=> 3 - 4x = 0 hoặc 12x - 7 = 0

* 3 - 4x = 0 => x = \(\frac{3}{4}\)

* 12x - 7 = 0 => x = \(\frac{7}{12}\)

Vậy x =\(\frac{3}{4}\)hoặc x =\(\frac{7}{12}\)

21 tháng 6 2018

c)x2-2xy+y2+3x-3y-10

=(x-y)2+3(x-y)-10

=(x-y)2+2(x-y).3/2+9/4-49/4

=(x-y+3/2)2-(7/2)2

=(x-y+3/2+7/2)(x-y+3/2-7/2)

=(x-y+5)(x-y-2)

29 tháng 6 2018

a Đặt \(x^2\)=t[t\(\ge\)0}

6t^2-11t+3=6t^2-3t-9t+3=2t[3t-1] -3[3t-1]=[3t-1][2t-3]=[3x^2-1][2x^2-3]

b Đặt x^2+x=t[t\(\ge\)0]

t^2+3t+2=[t+1][t+2]

Đến đó Dương làm tương tự như câu a nhé