Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(\left(x^2+8x+7\right)\left(x+3\right)\left(x+5\right)+15\)
\(=\left(x^2+8x+7\right)\left(x^2+8x+15\right)+15\)
\(=\left(x^2+8x\right)^2+22\left(x^2+8x\right)+105+15\)
\(=\left(x^2+8x\right)^2+22\left(x^2+8x\right)+120\)
\(=\left(x^2+8x\right)^2+12\left(x^2+8x\right)+10\left(x^2+8x\right)+120\)
\(=\left(x^2+8x\right)\left(x^2+8x+12\right)+10\left(x^2+8x+12\right)\)
\(=\left(x^2+8x+12\right)\left(x^2+8x+10\right)\)
\(=\left(x+2\right)\left(x+6\right)\left(x^2+8x+10\right)\)
b) Ta có: \(\left(4x+1\right)\left(12x-1\right)\left(3x+2\right)\left(x+1\right)-4\)
\(=\left(12x^2+11x+2\right)\left(12x^2+11x-1\right)-4\)
\(=\left(12x^2+11x\right)^2+\left(12x^2+11x\right)-2-4\)
\(=\left(12x^2+11x\right)^2+\left(12x^2+11x\right)-6\)
\(=\left(12x^2+11x\right)^2+3\left(12x^2+11x\right)-2\left(12x^2+11x\right)-6\)
\(=\left(12x^2+11x\right)\left(12x^2+11x+3\right)-2\left(12x^2+11x+3\right)\)
\(=\left(12x^2+11x+3\right)\left(12x^2+11x-2\right)\)
c) Ta có: \(\left(x^2+2x\right)^2+9x^2+18x+20\)
\(=\left(x^2+2x\right)^2+9\left(x^2+2x\right)+20\)
\(=\left(x^2+2x\right)^2+5\left(x^2+2x\right)+4\left(x^2+2x\right)+20\)
\(=\left(x^2+2x\right)\left(x^2+2x+5\right)+4\left(x^2+2x+5\right)\)
\(=\left(x^2+2x+5\right)\left(x^2+2x+4\right)\)
b)(x2+x+1)(x2+x+2)-12
Đặt t=x2+x+1
t(t+1)-12=t2+t-12
=(t-3)(t+4)=(x2+x+1-3)(x2+x+1+4)
=(x2+x-2)(x2+x+5)
=(x-1)(x+2)(x2+x+5)
c)(x2+8x+7)(x2+8x+15)+15
Đặt t=x2+8x+7
t(t+8)+15=t2+8t+15
=(t+3)(t+5)
=(x2+8x+7+3)(x2+8x+7+15)
=(x2+8x+10)(x2+8x+22)
d)(x+2)(x+3)(x+4)(x+5)-24
=(x2+7x+10)(x2+7x+12)-24
Đặt t=x2+7x+10
t(t+2)-24=(t-4)(t+6)
=(x2+7x+10-4)(x2+7x+10+6)
=(x2+7x+6)(x2+7x+16)
=(x+1)(x+6)(x2+7x+16)
a/ Đặt x2 + 4x + 8 = a
Thì đa thức ban đầu thành
a2 + 3ax + 2x2 = (a2 + 2ax + x2) + (ax + x2)
= (a + x)2 + x(a + x) = (a + x)(a + 2x)
a)\(a\left(b^3-c^3\right)+b\left(c^3-a^3\right)+c\left(a^3-b^3\right)\)
\(=a\left(b^3-c^3\right)-b\text{[}\left(b^3-c^3\right)+\left(a^3-b^3\right)\text{]}+c\left(a^3-b^3\right)\)
\(=a\left(b^3-c^3\right)-b\left(b^3-c^3\right)-b\left(a^3-b^3\right)+c\left(a^3-b^3\right)\)
\(=\left(a-b\right)\left(b^3-c^3\right)-\left(b-c\right)\left(a^3-b^3\right)\)
\(=\left(a-b\right)\left(b-c\right)\left(b^2+bc+c^2\right)-\left(b-c\right)\left(a-b\right)\left(a^2+ab+b^2\right)\)
\(=\left(a-b\right)\left(b-c\right)\left(bc+c^2-a^2-ab\right)\)
\(=\left(a-b\right)\left(b-c\right)\left(c-a\right)\left(a+b+c\right)\)
c) Đặt \(A=\left(x^2+3x+1\right)\left(x^2+3x+2\right)-6\)
Đặt \(x^2+3x+1,5=a\)
\(\Rightarrow A=\left(a-0,5\right)\left(a+0,5\right)-6\)
\(\Rightarrow A=a^2-0,25-6\)
\(\Rightarrow A=a^2-\frac{25}{4}\)
\(\Rightarrow A=\left(a-\frac{5}{2}\right)\left(a+\frac{5}{2}\right)\)
Thay \(a=x^2+3x+0,5\)vào A ta có :
\(A=\left(x^2+3x+0,5-\frac{5}{2}\right)\left(x^2+3x+0,5+\frac{5}{2}\right)\)
\(A=\left(x^2+3x-2\right)\left(x^2+3x+3\right)\)
c, Đặt \(x^2+3x+2=a\)
Ta có : \(\left(a-1\right)a-6=a^2-a-6=\left(a^2-3a\right)+\left(2a-6\right)\)
\(=a\left(a-3\right)+2\left(a-3\right)\)
\(=\left(a+2\right)\left(a-3\right)\)
\(=\left(x^2+3x+4\right)\left(x^2+3x-1\right)\)
Câu d làm tương tự .
Gợi ý : (x+3)(x+5) = x2 + 8x + 15
đặt bằng a rồi giải tiếp
a) \(\left(x^2+8x+7\right)\left(x+3\right)\left(x+5\right)+15\)
\(= \left(x^2+8x+7\right)\left(x^2+5x+3x+15\right)+15\)
\(=\left(x^2+8x+7\right)\left(x^2+8x+15\right)+15\)
Đặt \(x^2+8x+7=t\), ta đc:
⇒ \(t\left(t+8\right)+15\) = \(t^2+8t+15=\left(t+5\right)\left(t+3\right)\)
b) (4x+1)(12x−1)(3x+2)(x+1)−4
= \(\left(12x^2+8x+3x+2\right)\left(12x^2+12x-x-1\right)-4\)
\(=\left(12x^2+11x+2\right)\left(12x^2+11x-1\right)-4\)
Đặt \(12x^2+11x+2=t\)
⇒\(t\left(t-3\right)-4\)=\(\left(t-4\right)\left(t+1\right)\)
c) tương tự nha