Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(x^4+2x^3-4x-4=\left[\left(x^2\right)^2-4\right]+\left(2x^3-4x\right)\)
\(=\left(x^2+2\right)\left(x^2-2\right)+2x\left(x^2-2\right)\)
\(=\left(x^2+2+2x\right)\left(x^2-2\right)\)
a) \(x^4+2x^3-4x-4=\left(x^4+2x^3+x^2\right)-\left(x^2+4x+4\right)=x^2\left(x+1\right)^2-\left(x+2\right)^2\)
\(=\left(x^2+x-x-2\right)\left(x^2+x+x+2\right)=\left(x^2-2\right)\left(x^2+2x+2\right)\)
b) \(x^2+y^2-x^2y^2+xy-x-y=\left(x^2-x^2y^2\right)+\left(y^2-y\right)+\left(xy-x\right)\)
\(=x^2\left(1-y\right)\left(1+y\right)-y\left(1-y\right)-x\left(1-y\right)=\left(1-y\right)\left(x^2+x^2y-y-x\right)\)
\(=\left(1-y\right)\left[\left(x-1\right)x+y\left(x-1\right)\left(x+1\right)\right]=\left(1-y\right)\left(x-1\right)\left(x+xy+y\right)\)
c) Không phân tích được.
Ta có: M = xy(x+y) + yz(y+z) + xz (x+z) + 2xyz
= xy(x + y) + yz(y + z) + xyz + xz(x + z) + xyz
= xy(x + y) + yz(y + z + x) + xz(x + z + y)
= xy(x + y) + z(x + y + z)(x + y)
= (x + y)(xy + zx + zy + z2)
= (x + y)[x(y + z) + z(y + z)]
M = (x + y)(y + z)(z + x) (đpcm)
a) x^4 + 2^3-x -2
=x^4 - x^3 + 3x^3 - 3x^2 + 3x^2 - 3x + 2x-2
=x^3.(x-1) + 3x^2.(x-1) + 3x.(x-1)+2.(x-1)
=(x-1).( x^3+ 3x^2 + 3x+2)
=(X+1).(X^3 + 2X^2 + X^2 +2X +X+2)
=(X+1).(X+2).(X^2 +X + 1)
\(x^3+8x^2+17x+10\)
\(=x^3+2x^2+x^2+5x^2+10x+5x+2x+10\)
\(=\left(x^3+x^2\right)+\left(2x^2+2x\right)+\left(5x^2+5x\right)+\left(10x+10\right)\)
\(=x^2\left(x+1\right)+2x\left(x+1\right)+5x\left(x+1\right)+10\left(x+1\right)\)
\(=\left(x+1\right)\left(x^2+2x+5x+10\right)\)
\(=\left(x+1\right)\left[x\left(x+2\right)+5\left(x+2\right)\right]\)
\(=\left(x+1\right)\left(x+2\right)\left(x+5\right)\)
Bài 1 :
a) \(A=x^2-6x+11\)
\(A=x^2-2\cdot x\cdot3+3^2+2\)
\(A=\left(x-3\right)^2+2\ge2\forall x\)
Dấu "=' xảy ra \(\Leftrightarrow x-3=0\Leftrightarrow x=3\)
b) \(B=2x^2+10x-1\)
\(B=2\left(x^2+5x-\frac{1}{2}\right)\)
\(B=2\left[x^2+2\cdot x\cdot\frac{5}{2}+\left(\frac{5}{2}\right)^2-\frac{27}{4}\right]\)
\(B=2\left[\left(x+\frac{5}{2}\right)^2-\frac{27}{4}\right]\)
\(B=2\left(x+\frac{5}{2}\right)^2-\frac{27}{2}\ge\frac{-27}{2}\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x+\frac{5}{2}=0\Leftrightarrow x=\frac{-5}{2}\)
c) \(C=5x-x^2\)
\(C=-\left(x^2-5x\right)\)
\(C=-\left[x^2-2\cdot x\cdot\frac{5}{2}+\left(\frac{5}{2}\right)^2-\left(\frac{5}{2}\right)^2\right]\)
\(C=-\left[\left(x-\frac{5}{2}\right)^2-\frac{25}{4}\right]\)
\(C=\frac{25}{4}-\left(x-\frac{5}{2}\right)^2\le\frac{25}{4}\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x-\frac{5}{2}=0\Leftrightarrow x=\frac{5}{2}\)
Bài 2 :
\(\left(x+y+z\right)^3-x^3-y^3-z^3\)
\(=\left[x+\left(y+z\right)\right]^3-x^3-y^3-z^3\)
\(=x^3+3x^2\left(y+z\right)+3x\left(y+z\right)^2+\left(y+z\right)^3-x^3-y^3-z^3\)
\(=3x^2\left(y+z\right)+3x\left(y+z\right)^2+y^3+3y^2z+3yz^2+z^3-y^3-z^3\)
\(=3x^2\left(y+z\right)+3x\left(y+z\right)^2+3yz\left(y+z\right)\)
\(=3\left(y+z\right)\left[x^2+x\left(y+z\right)+yz\right]\)
\(=3\left(y+z\right)\left(x^2+xy+xz+yz\right)\)
\(=3\left(y+z\right)\left[x\left(x+y\right)+z\left(x+y\right)\right]\)
\(=3\left(y+z\right)\left(x+y\right)\left(x+z\right)\)
a
Ta có
\(2x^2+2x=2x\left(x+1\right)\)
b
\(\left(1+xy\right)^2-\left(x+y\right)^2=\left(1+xy-x-y\right)\left(1+xy+x+y\right)\)
\(\left[\left(1-x\right)-y\left(1-x\right)\right]\left[\left(1+x\right)+y\left(1+x\right)\right]=\left(1-x\right)\left(1-y\right)\left(1+x\right)\left(1+y\right)\)