Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
câu ở dưới mình ghi sai đề
x4+2002x2+2001x+2002
mk đang cần gấp lắm.mọi người giúp mk nha.ai nhanh tay nhất mk k cho
a) \(x^5+x+1=\left(x^5+x+1\right)=x\left(x^4+1+\frac{1}{x}\right)\)
b) và c) Tương tự nha
Chả biết đúng hay sai :v tại dùng máy tính tính ra kết quả rồi phân tích ngược lại
a) \(x^5+x+1=x^5+x^4+x^3-x^3-x^2-x+x^2+x+1\)
\(=x^3\left(x^2+x+1\right)+x\left(x^2+x+1\right)-\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^3-x-1\right)\)
b)\(x^4+2002x^2+2001x+2002=x^4+x^3+1-x^3+x^2+x+2002x^2+2002x+1\)
\(=x^2\left(x^2+x+1\right)-x\left(x^2+x+1\right)+2002\left(x^2+x+1\right)\)
\(=\left(x^2-x+2002\right)\left(x^2+x+1\right)\)
c)Tương tự câu a),ta phân tích được:
\(x^{11}+x^7+1=\left(x^2+x+1\right)\left(x^9-x^8+x^6-x^4+x^3-x+1\right)\)
\(x^4+2002x^2+2001x+2002\)
\(=x^4+x^2+1+2001x^2+2001x+2001\)
\(=\left(x^4+2x^2+1\right)-x^2+2001\left(x^2+x+1\right)\)
\(=\left(x^2+1-x\right)\left(x^2+1+x\right)+2001\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^2+1-x+2001\right)\)
\(=\left(x^2+x+1\right)\left(x^2-x+2002\right)\)
\(x^4+2007x^2-2006x+2007\)
\(=x^4+2x^2+1-x^2+2006\left(x^2-x+1\right)\)
\(=\left(x^2+1\right)^2-x^2+2006\left(x^2-x+1\right)\)
\(=\left(x^2+1+x\right)\left(x^2+1-x\right)+2006\left(x^2-x+1\right)\)
\(=\left(x^2-x+1\right)\left(x^2+x+1+2006\right)\)
\(=\left(x^2-x+1\right)\left(x^2+x+2007\right)\)
\(x^4+2002x^2-2001x+2002\)
\(=x^4+2002x^2+x-2002x+2002\)
\(=\left(x^4+x\right)+\left(2002x^2-2002x+2002\right)\)
\(=x\left(x^3+1\right)+2002\left(x^2-x+1\right)\)
\(=x\left(x+1\right)\left(x^2-x+1\right)+2002\left(x^2-x+1\right)\)
\(=\left(x^2-x+1\right)\left[x\left(x+1\right)+2002\right]\)
\(=\left(x^2-x+1\right)\left(x^2+x+2002\right)\)
1,
x^5+x+1=(x^5−x^2)+(x^2+x+1)
=x^2(x^3 - 1) + (x^2 + x + 1)
=x^2(x-1)(x^2 + x + 1)+(x^2 + x + 1)
=(x^2 + x + 1).[x^2(x-1)+1]
2,tương tự
\(x^4+2002x^2+2001x+2002\)
\(=x^4+x^3-x^3+x^2-x^2+2002x^2+2002x-x+2002\)
\(=\left(x^4+x^3+x^2\right)-\left(x^3+x^2+x\right)+\left(2002x^2+2002x+2002\right)\)
\(=x^2\left(x^2+x+1\right)-x\left(x^2+x+1\right)+2002\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^2-x+2002\right)\)
Ta có: \(x^4+2002x^2+2001x+2002\)
= \(x^4+2002x^2+2002x-x+2002\)
= \(\left(x^4-x\right)+2002\left(x^2+x+1\right)\)
= \(x\left(x^3-1\right)+2002\left(x^2+x+1\right)\)
= \(x\left(x-1\right)\left(x^2+x+1\right)+2002\left(x^2+x+1\right)\)
= \(\left(x^2+x+1\right)\left[x\left(x-1\right)+2002\right]\)
=\(\left(x^2+x+1\right)\left(x^2-x+2002\right)\)
\(x^8+3x^4+4\)
\(=\left(x^8-x^6+2x^4\right)+\left(x^6-x^4+2x^2\right)+\left(2x^4-2x^2+4\right)\)
\(=x^4\left(x^4-x^2+2\right)+x^2\left(x^4-x^2+2\right)+2\left(x^4-x^2+2\right)\)
\(=\left(x^4+x^2+2\right)\left(x^4-x^2+2\right)\)
\(4x^4+4x^3+5x^2+2x+1\)
\(=\left(4x^4+2x^3+2x^2\right)+\left(2x^3+x^2+x\right)+\left(2x^2+x+1\right)\)
\(=2x^2\left(2x^2+x+1\right)+x\left(2x^2+x+1\right)+\left(2x^2+x+1\right)\)
\(=\left(2x^2+x+1\right)^2\)
Đơn giản thôi :]>
Sau khi phân tích thì P(x) có dạng ( x2 + dx + 2 )( x2 + ax - 2 )
P(x) = x4 - x3 - 2x - 4 = ( x2 + dx + 2 )( x2 + ax - 2 )
⇔ x4 - x3 - 2x - 4 = x4 + ax3 - 2x2 + dx3 + adx2 - 2dx + 2x2 + 2ax - 4
⇔ x4 - x3 - 2x - 4 = x4 + ( a + d )x3 + adx2 + ( 2a - 2d )x - 4
Đồng nhất hệ số ta được :
\(\hept{\begin{cases}a+d=-1\\ad=0\\2a-2d=-2\end{cases}}\Leftrightarrow\hept{\begin{cases}a=-1\\d=0\end{cases}}\)
( x2 + dx + 2 )( x2 + ax - 2 )
= ( x2 + 2 )( x2 - x - 2 )
= ( x2 + 2 )( x2 - 2x + x - 2 )
= ( x2 + 2 )[ x( x - 2 ) + ( x - 2 ) ]
= ( x2 + 2 )( x - 2 )( x + 1 )
=> P(x) = x4 - x3 - 2x - 4 = ( x2 + 2 )( x - 2 )( x + 1 )
Ta có: \(x^4+2002x^2+2001x+2002\)
\(=x^4+x^3-x^3+x^2-x^2+2002x^2+2002x-x+2002\)
\(=x^4+x^3+x^2-x^3-x^2-x+2002x^2+2002x+2002\)
\(=x^2\left(x^2+x+1\right)-x\left(x^2+x+1\right)+2002\left(x^2+x+1\right)\)
\(=\left(x^2-x+2002\right)\left(x^2+x+1\right)\)