Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) \(x^6-x^4-9x^3+9x^2\)
\(=x^2\left(x^4-x^2-9x+9\right)\)
\(=x^2\left[x^2\left(x^2-1\right)-9\left(x-1\right)\right]\)
\(=x^2\left(x-1\right)\left[x^2\left(x+1\right)-9\right]\)
\(=x^2\left(x-1\right)\left(x^3+x^2-9\right)\)
2) \(x^4-4x^3+8x^2-16x+16\)
\(=x^2\left(x^2+4\right)-4x\left(x^2+4\right)+4\left(x^2+4\right)\)
\(=\left(x^2+4\right)\left(x-2\right)^2\)
3) \(x^4-25x^2+20x-4=x^4+5x^3-2x^2-5x^3-25x^2+10x+2x^2+10x-4\)
\(=x^2\left(x^2+5x-2\right)-5x\left(x^2+5x-2\right)+2\left(x^2+5x-2\right)\)
\(=\left(x^2+5x-2\right)\left(x^2-5x+2\right)\)
4) \(5x\left(x-2y\right)+2\left(2y-x\right)^2\)\(=5x\left(x-2y\right)+2\left(x-2y\right)^2=\left(x-2y\right)\left(5x+2x-4y\right)=\left(x-2y\right)\left(7x-4y\right)\)
5) \(x^2\left(x^2-6\right)-x^2+9=x^4-7x^2+9\)
\(=x^4+x^3-3x^2-x^3-x^2+3x-3x^2-3x+9\)
\(=x^2\left(x^2+x-3\right)-x\left(x^2+x-3\right)-3\left(x^2+x-3\right)\)
\(=\left(x^2+x-3\right)\left(x^2-x-3\right)\)
6) \(7x\left(y-4\right)^2-\left(4-y\right)^3=7x\left(y-4\right)^2+\left(y-4\right)^3=\left(y-4\right)^2\left(7x+y-4\right)\)
7) \(x^3+2x^2-6x-27=x^3-3x^2+5x^2-15x+9x-27\)
\(=x^2\left(x-3\right)+5x\left(x-3\right)+9\left(x-3\right)=\left(x-3\right)\left(x^2+5x+9\right)\)
7, \(27x^3+y^3=\left(3x+y\right)\left(9x^2-3xy+y^2\right)\)
8, \(8x^3-\frac{1}{125}y^3=\left(2x-\frac{1}{5}y\right)\left(4x^2+\frac{2}{5}xy+\frac{1}{25}y^2\right)\)
9, ĐK x >= 0
\(x-2\sqrt{x}-3=x-3\sqrt{x}+\sqrt{x}-3\)
\(=\sqrt{x}\left(\sqrt{x}+1\right)-3\left(\sqrt{x}+1\right)=\left(\sqrt{x}-3\right)\left(\sqrt{x}+1\right)\)
10, \(-4x^2-4x+10=-\left(4x^2+4x+1\right)+11\)
\(=-\left[\left(2x+1\right)^2-11\right]=-\left(2x+1-\sqrt{11}\right)\left(2x+1+\sqrt{11}\right)\)
11;12 xem lại đề
13, \(-x^3+6xy^2-12xy^2+8y^3=-\left(x^3-6xy^2+12xy^2-8y^3\right)=-\left(x-2y\right)^3\)
Trả lời:
7, \(27x^3+y^3=\left(3x+y\right)\left(9x^2-3xy+y^2\right)\)
8, \(8x^3-\frac{1}{125}y^3=\left(2x-\frac{1}{5}y\right)\left(4x^2+\frac{2}{5}xy+\frac{1}{25}y^2\right)\)
9, \(x-2\sqrt{x}-3\left(ĐK:x\ge0\right)\)
\(=x-3\sqrt{x}+\sqrt{x}-3=\sqrt{x}\left(\sqrt{x}-3\right)+\left(\sqrt{x}-3\right)=\left(\sqrt{x}-3\right)\left(\sqrt{x}+1\right)\)
10, \(10-4x-4x^2=-\left(4x^2+4x-10\right)=-\left(4x^2+4x+1-11\right)=-\left[\left(2x+1\right)^2-11\right]\)
\(=-\left(2x+1\right)^2+11=-\left[\left(2x+1\right)^2-11\right]=-\left(2x+1-\sqrt{11}\right)\left(2x+1+\sqrt{11}\right)\)
11,sửa đề: \(15x\left(x-3y\right)+20y\left(3y-x\right)=15x\left(x-3y\right)-20y\left(x-3y\right)=5\left(x-3y\right)\left(3x-4y\right)\)
12, \(25x^2-2=\left(5x-\sqrt{2}\right)\left(5x+\sqrt{2}\right)\)
13, sửa đề: \(-x^3+6x^2y-12xy^2+8y^3=-\left(x^3-6x^2y+12xy^2-8y^3\right)=-\left(x-2y\right)^3\)
1. 8 - 12x + 6x2 - x3
= 23 - 3.22.x + 3.x2.2 - x3
=(2-x)3
2. 125x3 - 75x2 +15x - 1
=(5x)3 - 3.(5x)2.1 + 3.5x.12 - 13
=(5x - 1)3
3, 4 (sai đề)
5. x3 + 2x2 - 6x - 27
=(x3 - 27) + (2x2 - 6x)
=(x3 - 33) + (2x2 - 6x)
=(x -3)(x2 + 3x + 9) + 2x(x-3)
=(x-3)(x2 + 3x +9 +2x)
=(x-3)(x2 + 5x +9)
6. 12x3 + 4x2- 27x -9
=(12x3 + 4x2) - (27x + 9)
=4x2(3x + 1) - 9(3x +1)
=(3x -1)(4x2 -9)
=(3x-1)(2x-3)(2x+3)
a) x2 + 6x + 9 = x2 + 2 . x . 3 + 32 = (x + 3)2
b) 10x – 25 – x2 = -(-10x + 25 +x2) = -(25 – 10x + x2)
= -(52 – 2 . 5 . x – x2) = -(5 – x)2
c) 8x3 - 1/8 = (2x)3 – (1/2)3 = (2x - 1/2)[(2x)2 + 2x . 12 + (1/2)2]
= (2x - 1/2)(4x2 + x + 1/4)
d)1/25x2 – 64y2 = (1/5x)2(1/5x)2- (8y)2 = (1/5x + 8y)(1/5x - 8y)
Bài 1 : Khai triển :
a, \(\left(x+5\right)^2=x^2+10x+25\)
b, \(\left(x-3y\right)^2=x^2-6xy+9y^2\)
c, \(\left(x^2-6z\right)\left(x^2+6z\right)=x^4-36z^2\)
d, \(\left(x+3y\right)^3=x^3+9x^2y+27xy^2+27y^3\)
e, \(27x^3-9y^2+y-\frac{1}{27}=\left(3x-\frac{1}{3}\right)^3\)
g, \(8x^6+12x^4y+6x^2y^2+y^3=\left(2x^2+y\right)\)
h, \(4x^2+12x^4y+6x^22y^2+y^3=\left(\sqrt[3]{4x^2}+y\right)\)
6) c) x3 - x2 + x = 1
<=> x3 - x2 + x - 1 = 0
<=> (x3 - x2) + (x - 1) = 0
<=> x2 (x - 1) + (x - 1) = 0
<=> (x - 1) (x2 + 1) = 0
=> x - 1 = 0 hoặc x2 + 1 = 0
* x - 1 = 0 => x = 1
* x2 + 1 = 0 => x2 = -1 => x = -1
Vậy x = 1 hoặc x = -1
Bài 5:
a) Đặt \(A=\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)
\(\Rightarrow8A=\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)
\(\Rightarrow8A=\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)
\(\Rightarrow8A=\left(3^8-1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)
\(\Rightarrow8A=\left(3^{16}-1\right)\left(3^{16}+1\right)\)
\(\Rightarrow8A=3^{32}-1\)
\(\Rightarrow A=\frac{3^{32}-1}{8}\)
b) (7x+6)2 + (5-6x)2 - (10-12x)(7x+6)
=(7x+6)2 + (5-6x)2 - 2(5-6x)(7x+6)
\(=\left(7x+6-5+6x\right)^2\)
\(=\left(13x+1\right)^2\)
Bài 8:
b. 1+8x6y3 = 13+23(x2)3y3 = 13+(2x2y)3
= (1+2x2y)(1-2x2y+4x4y2)
e. 27x3+\(\dfrac{y^3}{8}\)\(=\left(3x\right)^3+\left(\dfrac{y}{2}\right)^3\)
= (3x+\(\dfrac{y}{2}\))(9x2-\(\dfrac{3xy}{2}\)+\(\dfrac{y^2}{4}\))
Bài 9:
c. 1- 9x +27x2 -27x3 = 13-3.12.3x+3.(3x)2-(3x)3
= (1-3x)3
d. x3+\(\dfrac{3}{2}x^2\)+\(\dfrac{3}{4}x+\dfrac{1}{8}\) = x3+\(3x^2.\dfrac{1}{2}\)+\(3x.\dfrac{1}{4}+\left(\dfrac{1}{2}\right)^3\)
= (x+\(\dfrac{1}{2}\))3
f. x2 - 2xy +y2 -4m2 +4m.n - n2 = (x2 - 2xy +y2)-((2m)2 -2.2m.n + n2)
= (x-y)2-(2m-n)2 = (x-y-2m+n)(x-y+2m-n)
\(1,4x^4+4x^2y^2-8y^4\)
\(=4\left(x^4+x^2y^2-y^4-y^4\right)\)
\(=4\left[\left(x^4-y^4\right)+\left(x^2y^2-y^4\right)\right]\)
\(=4\left[\left(x^2+y^2\right)\left(x^2-y^2\right)+y^2\left(x^2-y^2\right)\right]\)
\(=4\left(x^2-y^2\right)\left(x^2+y^2+y^2\right)\)
\(=4\left(x-y\right)\left(x+y\right)\left(x^2+2y^2\right)\)
\(2,12x^2y-18xy^2-30y^3\)
\(=6y\left(2x^2-3xy-5y^2\right)\)
\(=6y\left[\left(2x^2+2xy\right)-\left(5xy+5y^2\right)\right]\)
\(=6y\left[2x\left(x+y\right)-5y\left(x+y\right)\right]\)
\(=6y\left(x+y\right)\left(2x-5y\right)\)
1.
\(x^2-22x+12\) : biểu thức không phân tích được thành nhân tử nữa.
2.
\(9x^2+6x+1=(3x)^2+2.3x.1+1^2=(3x+1)^2\)
3.
\(x^2-10x+2\): không p. tích được thành nhân tử.
4.
\(x^3+1=x^3+1^3=(x+1)(x^2-x+1)\)
5.
\(8x^3-27y^3=(2x)^3-(3y)^3=(2x-3y)[(2x)^2+(2x)(3y)+(3y)^2]\)
\(=(2x-3y)(4x^2+6xy+9y^2)\)
6.
\((x+3y)^2-(3y+1)^2=[(x+3y)-(3y+1)][(x+3y)+(3y+1)]\)
\(=(x-1)(x+6y+1)\)
7.
\(4y^2-36x^2=(2y)^2-(6x)^2=(2y-6x)(2y+6x)=4(y-3x)(y+3x)\)
8.
\(27-(x+4)^3=3^3-(x+4)^3=[3-(x+4)][3^2+3(x+4)+(x+4)^2]\)
\(=-(x+1)(37+x^2+11x)\)
9.
\(25x^2-10xy+y^2=(5x)^2-2.5x.y+y^2=(5x-y)^2\)
10.
\(9x^6-12x^7+4x^8=x^6(9-12x+4x^2)=x^6[3^2-2.3.2x+(2x)^2]\)
\(=x^6(3-2x)^2\)