K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 7 2019

\(\text{a)}x\sqrt{x}+\sqrt{x}-x-1\)

\(=\left(x\sqrt{x}+\sqrt{x}\right)-\left(x+1\right)\)

\(=\sqrt{x}\left(x+1\right)-\left(x+1\right)\)

\(=\left(x+1\right)\left(\sqrt{x}-1\right)\)

\(\text{b)}\sqrt{ab}+2\sqrt{a}+3\sqrt{b}+6\)

\(=\left(\sqrt{ab}+2\sqrt{a}\right)+\left(3\sqrt{b}+6\right)\)

\(=\sqrt{a}\left(\sqrt{b}+2\right)+3\left(\sqrt{b}+2\right)\)

\(=\left(\sqrt{b}+2\right)\left(\sqrt{a}+3\right)\)

\(\text{c)}\left(1+\sqrt{x}\right)^2-4\sqrt{x}\)

\(=\left(1+\sqrt{x}\right)^2-\left(2\sqrt{\sqrt{x}}\right)^2\)

\(=\left(1+\sqrt{x}+2\sqrt{\sqrt{x}}\right)\left(1+\sqrt{x}-2\sqrt{\sqrt{x}}\right)\)

\(\text{d)}\sqrt{ab}-\sqrt{a}-\sqrt{b}+1\)

\(=\left(\sqrt{ab}-\sqrt{a}\right)-\left(\sqrt{b}-1\right)\)

\(=\sqrt{a}\left(\sqrt{b}-1\right)-\left(\sqrt{b}-1\right)\)

\(=\left(\sqrt{b}-1\right)\left(\sqrt{a}-1\right)\)

\(\text{e)}a+\sqrt{a}+2\sqrt{ab}+2\sqrt{b}\)

\(=\left(a+\sqrt{a}\right)+\left(2\sqrt{ab}+2\sqrt{b}\right)\)

\(=\left[\left(\sqrt{a}\right)^2+\sqrt{a}\right]+\left(2\sqrt{ab}+2\sqrt{b}\right)\)

\(=\sqrt{a}\left(\sqrt{a}+1\right)+2\sqrt{b}\left(\sqrt{a}+1\right)\)

\(=\left(\sqrt{a}+1\right)\left(\sqrt{a}+2\sqrt{b}\right)\)

\(\text{f)}x-2\sqrt{x-1}-a^2\)

\(=\left(\sqrt{x-2}\right)^2\left(\sqrt{\sqrt{x-1}}\right)^2-a^2\)

\(=\left(\sqrt{x-2}\sqrt{\sqrt{x-1}}\right)^2-a^2\)

\(=\left(\sqrt{x-2\sqrt{x-1}}\right)^2-a^2\)

\(=\left(\sqrt{x-2\sqrt{x-1}}+a\right)\left(\sqrt{x-2\sqrt{x-1}}-a\right)\)

19 tháng 6 2019

Bài 4 :

\(a,\sqrt{x-1}=2\)

=> \(x-1=2^2=4\)

=>\(x=4+1=5\)

Vậy \(x\in\left\{5\right\}\)

\(b,\sqrt{x^2-3x+2}=2\)

=> \(x^2-3x+2=2\)

=> \(x^2-3x=2-2=0\)

=>\(x.\left(x-3\right)=0\)( phân tích đa thức thanh nhân tử )

=> \(\left[{}\begin{matrix}x=0\\x-3=0=>x=0+3=3\end{matrix}\right.\)

Vậy \(x\in\left\{0;3\right\}\)

MÌNH Biết vậy thôi ,

19 tháng 6 2019

Bài 4 :

c) \(\sqrt{4x+1}=x+1\)ĐK : \(x\ge-1\)

\(\Leftrightarrow4x+1=\left(x+1\right)^2\)

\(\Leftrightarrow x^2+2x+1-4x-1=0\)

\(\Leftrightarrow x^2-2x=0\)

\(\Leftrightarrow x\left(x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)( thỏa )

d) \(\sqrt{x+2\sqrt{x-1}}-\sqrt{x-2\sqrt{x-1}}=2\)

\(\Leftrightarrow\sqrt{x-1+2\sqrt{x-1}+1}-\sqrt{x-1-2\sqrt{x-1}+1}=2\)

\(\Leftrightarrow\sqrt{\left(\sqrt{x-1}+1\right)^2}-\sqrt{\left(\sqrt{x-1}-1\right)^2}=2\)

\(\Leftrightarrow\left|\sqrt{x-1}+1\right|-\left|\sqrt{x-1}-1\right|=2\)

+) Xét \(x\ge2\)

\(pt\Leftrightarrow\sqrt{x-1}+1-\sqrt{x-1}+1=2\)

\(\Leftrightarrow2=2\)( luôn đúng )

+) Xét \(1\le x< 2\):

\(pt\Leftrightarrow\sqrt{x-1}+1-1+\sqrt{x-1}=2\)

\(\Leftrightarrow\sqrt{x-1}=1\)

\(\Leftrightarrow x-1=1\)

\(\Leftrightarrow x=2\)( loại )

Vậy \(x\ge2\)

26 tháng 8 2018

1) ta có : \(x\sqrt{x}+\sqrt{x}-x-1=\sqrt{x}\left(x+1\right)-\left(x+1\right)\)

\(=\left(\sqrt{x}-1\right)\left(x+1\right)\)

2) ta có : \(\sqrt{ab}-\sqrt{a}-\sqrt{b}+1=\sqrt{a}\left(\sqrt{b}-1\right)-\left(\sqrt{b}-1\right)\)

\(=\left(\sqrt{a}-1\right)\left(\sqrt{b}-1\right)\)

3) ta có : \(x-\sqrt{x}-2=x+\sqrt{x}-2\sqrt{x}-2\)

\(=\sqrt{x}\left(\sqrt{x}+1\right)-2\left(\sqrt{x}+1\right)=\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)\)

4) ta có : \(x-3\sqrt{x}+2=x-\sqrt{x}-2\sqrt{x}+2\)

\(=\sqrt{x}\left(\sqrt{x}-1\right)-2\left(\sqrt{x}-1\right)=\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)\)

5) ta có : \(-6x+5\sqrt{x}+1=-6x+6\sqrt{x}-\sqrt{x}+1\)

\(=6\sqrt{x}\left(1-\sqrt{x}\right)+\left(1-\sqrt{x}\right)=\left(6\sqrt{x}+1\right)\left(1-\sqrt{x}\right)\)

6) ta có : \(x+4\sqrt{x}+3=x+\sqrt{x}+3\sqrt{x}+3\)

\(=\sqrt{x}\left(\sqrt{x}+1\right)+3\left(\sqrt{x}+1\right)=\left(\sqrt{x}+3\right)\left(\sqrt{x}+1\right)\)

7) ta có : \(3\sqrt{a}-2a-1=-2a+2\sqrt{a}+\sqrt{a}-1\)

\(=-2\sqrt{a}\left(\sqrt{a}-1\right)+\left(\sqrt{a}-1\right)=\left(1-2\sqrt{a}\right)\left(\sqrt{a}-1\right)\)

8) ta có : \(x+2\sqrt{x-1}=x-1+2\sqrt{x-1}+1\)

\(=\left(\sqrt{x-1}+1\right)^2\)

9) ta có : \(7\sqrt{x}-6x-2=-6x+3\sqrt{x}+4\sqrt{x}-2\)

\(=-3\sqrt{x}\left(2\sqrt{x}-1\right)+2\left(2\sqrt{x}-1\right)=\left(2-3\sqrt{x}\right)\left(2\sqrt{x}-1\right)\)

10) ta có : \(x-5\sqrt{x}+6=x-2\sqrt{x}-3\sqrt{x}+6\)

\(=\sqrt{x}\left(\sqrt{x}-2\right)-3\left(\sqrt{x}-2\right)=\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)\)

11) ta có : \(x-2+\sqrt{x^2-4}=\sqrt{\left(x-2\right)^2}+\sqrt{\left(x-2\right)\left(x+2\right)}\)

\(=\sqrt{x-2}\left(\sqrt{x-2}+\sqrt{x+2}\right)\)

AH
Akai Haruma
Giáo viên
21 tháng 8 2019

Bài 1:

a)

\(\sqrt{13-2\sqrt{42}}=\sqrt{6+7-2\sqrt{6.7}}=\sqrt{(\sqrt{7}-\sqrt{6})^2}=|\sqrt{7}-\sqrt{6}|=\sqrt{7}-\sqrt{6}\)

b)

\(\sqrt{46+6\sqrt{5}}=\sqrt{46+2\sqrt{45}}=\sqrt{45+1+2\sqrt{45.1}}=\sqrt{(\sqrt{45}+1)^2}=\sqrt{45}+1\)

\(=3\sqrt{5}+1\)

c)

\(\sqrt{12-3\sqrt{15}}=\sqrt{\frac{24-6\sqrt{15}}{2}}=\sqrt{\frac{24-2\sqrt{135}}{2}}=\sqrt{\frac{15+9-2\sqrt{15.9}}{2}}\)

\(=\sqrt{\frac{(\sqrt{15}-\sqrt{9})^2}{2}}=\frac{\sqrt{15}-\sqrt{9}}{\sqrt{2}}=\frac{\sqrt{15}-3}{\sqrt{2}}\)

d)

\(\sqrt{11+\sqrt{96}}=\sqrt{11+2\sqrt{24}}=\sqrt{8+3+2\sqrt{8.3}}\)

\(=\sqrt{(\sqrt{8}+\sqrt{3})^2}=\sqrt{8}+\sqrt{3}\)

AH
Akai Haruma
Giáo viên
17 tháng 8 2019

Bài 1:

a)

\(\sqrt{13-2\sqrt{42}}=\sqrt{6+7-2\sqrt{6.7}}=\sqrt{(\sqrt{7}-\sqrt{6})^2}=|\sqrt{7}-\sqrt{6}|=\sqrt{7}-\sqrt{6}\)

b)

\(\sqrt{46+6\sqrt{5}}=\sqrt{46+2\sqrt{45}}=\sqrt{45+1+2\sqrt{45.1}}=\sqrt{(\sqrt{45}+1)^2}=\sqrt{45}+1\)

\(=3\sqrt{5}+1\)

c)

\(\sqrt{12-3\sqrt{15}}=\sqrt{\frac{24-6\sqrt{15}}{2}}=\sqrt{\frac{24-2\sqrt{135}}{2}}=\sqrt{\frac{15+9-2\sqrt{15.9}}{2}}\)

\(=\sqrt{\frac{(\sqrt{15}-\sqrt{9})^2}{2}}=\frac{\sqrt{15}-\sqrt{9}}{\sqrt{2}}=\frac{\sqrt{15}-3}{\sqrt{2}}\)

d)

\(\sqrt{11+\sqrt{96}}=\sqrt{11+2\sqrt{24}}=\sqrt{8+3+2\sqrt{8.3}}\)

\(=\sqrt{(\sqrt{8}+\sqrt{3})^2}=\sqrt{8}+\sqrt{3}\)