Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(4x^3-13x^2+9x-18 \)
\(=4x^2\left(x-3\right)-x\left(x-3\right)+6\left(x-3\right)\)
\(=\left(x-3\right)\left(4x^2-x+6\right)\)
\(x^2-4y^2+4y-1=x^2-\left(2y-1\right)^2=\left(x-2y+1\right)\left(x+2y-1\right)\)
\(x^4+3x^3-9x-9=\left(x^2+3\right)\left(x^2-3\right)+3x\left(x^2-3\right)=\left(x^2-3\right)\left(x^2+3+3x\right)\)
a) \(3x^2-9x+30=3\left(x^2-3x+10\right)\)
b) \(3x^2-5x-2=3x^2-6x+x-2\)
\(=3x\left(x-2\right)+\left(x-2\right)=\left(3x+1\right)\left(x-2\right)\)
c) \(x^4+4y^4\)
\(=x^4+4y^4+2x^2y^2+2x^2y^2-4x^2y^2+4xy^3-4xy^3+2x^3y-2x^3y\)
\(=\left(4y^4-4xy^3+2x^2y^2\right)+\left(4xy^3-4x^2y^2+2x^3y\right)\)
\(+\left(2x^2y^2-2x^3y+x^4\right)\)
\(=2y^2\left(2y^2-2xy+x^2\right)+2xy\left(2y^2-2xy+x^2\right)\)
\(+x^2\left(2y^2-2xy+x^2\right)\)
\(=\left(2y^2+2xy+x^2\right)\left(2y^2-2xy+x^2\right)\)
d) \(x^5+x+1\)
\(=x^5+x+1+x^4-x^4+x^3-x^3+x^2-x^2\)
\(=\left(x^5-x^4+x^2\right)+\left(x^4-x^3+x\right)+\left(x^3-x^2+1\right)\)
\(=x^2\left(x^3-x^2+1\right)+x\left(x^3-x^2+1\right)+\left(x^3-x^2+1\right)\)
\(=\left(x^2+x+1\right)\left(x^3-x^2+1\right)\)
d,
\(a^2+2ab+b^2-ac-bc=\left(a+b\right)^2-c\left(a+b\right)\)
\(=\left(a+b\right)\left(a+b-c\right)\)
Vậy..
e
\(x^2-2x-4y^2-4y\)
\(=\left(x^2-2x+1\right)-\left(4y^2+4y+1\right)\)
\(=\left(x-1\right)^2-\left(2y+1\right)^2\)
\(=\left(x-2y-2\right)\left(x+2y\right)\)
\(x^8y^8+x^4y^4+1=\left[\left(x^4y^4\right)^2+2x^4y^4+1\right]-x^4y^4=\left(x^4y^4+1\right)^2-\left(x^2y^2\right)^2\)
\(=\left(x^4y^4+1-x^2y^2\right)\left(x^4y^4+1+x^2y^2\right)\)
\(=\left(x^4y^4+1-x^2y^2\right)\left[\left(x^2y^2\right)^2+2x^2y^2+1-x^2y^2\right]\)
\(=\left(x^4y^4+1-x^2y^2\right)\left[\left(x^2y^2+1\right)^2-\left(xy\right)^2\right]\)
\(=\left(x^4y^4+1-x^2y^2\right)\left(x^2y^2+1-xy\right)\left(x^2y^2+1+xy\right)\)
Phân tích đa thức thành nhân tử
x3+3x2y−9xy2+5y2
x8y8+x4y4+1
\(x^2-2x-4y^2-4y=\left(x^2-4y\right)-\left(2x+4y\right)\)
\(=\left(x-2y\right)\left(x+2y\right)-2\left(x+2y\right)\)
\(=\left(x-2y-2\right)\left(x+2y\right)\)
A= \(^{x^3+3x^2y-4xy^2-12y^3=x^2\left(x+3y\right)-4y^2\left(x+3y\right)=\left(x+3y\right)\left(x^2-4y^2\right)}\)
\(x^2-4y^2+4y-1=x^2-\left(2y-1\right)^2=\left(x+2y-1\right)\left(x-2y+1\right)\)
\(x^4+3x^3-9x-9\)
\(=x^4-9+3x^3-9x\)
\(=\left(x^2-3\right)\left(x^2+3\right)+3x\left(x^2-3\right)\)
\(=\left(x^2-3\right)\left(x^2+3+3x\right)\)