K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
7 tháng 9 2021

Lời giải:
a.

$x^8+x^4+1=(x^4)^2+2x^4+1-x^4$
$=(x^4+1)^2-(x^2)^2=(x^4+1-x^2)(x^4+1+x^2)$

$=(x^4+1-x^2)[(x^2+1)^2-x^2]$

$=(x^4-x^2+1)(x^2+1-x)(x^2+1+x)$

b. 

$x^{12}-3x^6-1=(x^6-\frac{3}{2})^2-\frac{13}{4}$

$=(x^6-\frac{3}{2}-\frac{\sqrt{13}}{2})(x^6-\frac{3}{2}+\frac{\sqrt{13}}{2})$

c.

$3x^4+10x^2-25=(3x^4+15x^2)-(5x^2+25)$

$=3x^2(x^2+5)-5(x^2+5)=(x^2+5)(3x^2-5)$

$=(x^2+5)(\sqrt{3}x-\sqrt{5})(\sqrt{3}x+\sqrt{5})$

c.

$x^2-5y^2-y^4+2xy-9$

$=(x^2+2xy+y^2)-(y^4+6y^2+9)$
$=(x+y)^2-(y^2+3)^2$
$=(x+y+y^2+3)(x+y-y^2-3)$

 

 

7 tháng 9 2021

\(a,x^8+x^4+1\\ =\left(x^8+2x^4+1\right)-x^4\\ =\left(x^4+1\right)^2-x^4\\ =\left(x^4-x^2+1\right)\left(x^4+x^2+1\right)\\ b,x^{12}-3x^6-1\\ =\left(x^{12}-2x^6+1\right)-x^6-2\\ =\left(x^6-1\right)^2-x^6-2\\ =\left(x^6-x^3-1\right)\left(x^6+x^3-1\right)-2???\\ c,3x^4+10x^2-25\\ =4x^4-\left(x^4-10x^2+25\right)\\ =4x^4-\left(x^2-5\right)^2\\ =\left(2x^2-x^2+5\right)\left(2x^2+x^2-5\right)\\ =\left(x^2+5\right)\left(3x^2-5\right)\\ d,x^2-5y^2-y^4+2xy-9\\ =\left(x^2+2xy+y^2\right)-\left(y^4+6y^2+9\right)\\ =\left(x+y\right)^2-\left(y^2+3\right)^2\\ =\left(x+y+y^2+3\right)\left(x+y-y^2-3\right)\)

4 tháng 8 2017

Mình sửa: Bài 1
2)x2+3x-15

20 tháng 5 2018

a) x2 + 6x + 9 = x2 + 2 . x . 3 + 32 = (x + 3)2

b) 10x – 25 – x2 = -(-10x + 25 +x2) = -(25 – 10x + x2)

                         = -(52 – 2 . 5 . x – x2) = -(5 – x)2

c) 8x3 - 1/8 = (2x)3 – (1/2)3 = (2x - 1/2)[(2x)2 + 2x . 12 + (1/2)2]

                    = (2x - 1/2)(4x2 + x + 1/4) 

d)1/25x2 – 64y2 = (1/5x)2(1/5x)2- (8y)2 = (1/5x + 8y)(1/5x - 8y)

21 tháng 10 2018

a)\(6x^2-9xy\)

\(=3x\left(2x-3y\right)\)

b)\(x^2-y^2-3x+3y\)

\(=\left(x-y\right)\left(x+y\right)-3\left(x-y\right)\)

\(=\left(x-y\right)\left(x+y-3\right)\)

21 tháng 10 2018

c)\(x^4-8x^2-9\)

\(=x^4+x^2-9x^2-9\)

\(=x^2\left(x^2+1\right)-9\left(x^2+1\right)\)

\(=\left(x^2-9\right)\left(x^2+1\right)\)

\(=\left(x+3\right)\left(x-3\right)\left(x^2+1\right)\)

d)\(x^4-4\left(x^2+5\right)-25\)

\(=\left(x^2-5\right)\left(x^2+5\right)-4\left(x^2+5\right)\)

\(=\left(x^2+5\right)\left(x^2-5-4\right)\)

\(=\left(x^2+5\right)\left(x^2-9\right)\)

\(=\left(x^2+5\right)\left(x-3\right)\left(x+3\right)\)

16 tháng 11 2018

b.10x(x-y)-6y(y-x)=10x(x-y)+6y(x-y)=(10x+6y)(x-y)

16 tháng 11 2018

c.3x2+5y-3xy-5x=(3x2--3xy)-(5x-5y)=3x(x-y)-5(x-y)=(3x-5)(x-y)

23 tháng 10 2016

kết quả thôi nha

23 tháng 10 2016

umk nhanh nha bạn

18 tháng 3 2018

\(a,x^2+6x+9\)

\(=x^2+3x+3x+9\)

\(=\left(x^2+3x\right)+\left(3x+9\right)\)

\(=x.\left(x+3\right)+3.\left(x+3\right)\)

\(=\left(x+3\right).\left(x+3\right)\)

\(=\left(x+3\right)^2\)

\(b,10x-25-x^2\)

\(=-\left(x^2-2.5.x+5^2\right)\)

\(=-\left(x-5\right)^2\)

\(c,x^2+4x-y^2+4\)

\(=\left(x^2+2.2.x+2^2\right)-y^2\)

\(=\left(x+2\right)^2-y^2\)

\(=\left(x+2-y\right).\left(x+2+y\right)\)

\(d,3x^2+6xy+3y^2-3z^2\)

\(=3.[\left(x^2+2xy+y^2\right)-z^2]\)

\(=3.[\left(x+y\right)^2-z^2]\)

\(=3.\left(x+y-z\right)\left(x+y+z\right)\)

\(e,x^2-2xy+y^2-z^2+2zt-t^2\)

\(=\left(x^2-2xy+y^2\right)-\left(z^2-2zt+t^2\right)\)

\(=\left(x-y\right)^2-\left(z-t\right)^2\)

\(=[\left(x-y\right)-\left(z-t\right)].[\left(x-y\right)+\left(z-t\right)]\)

\(=\left(x-y-z+t\right).\left(x-y+z-t\right)\)

20 tháng 3 2018

bai tim x bai 5 co 

10 tháng 7 2018

a) xy – 3x + 2y – 6

= (xy - 3x) + (2y - 6)

= x(y - 3) + 2(y - 3)

= (y - 3)(x + 2)

b) x2y + 4xy + 4y – y3

= y(x2 + 4x + 4 - y2)

= y[(x2 + 4x + 4) - y2]

= y[(x + 2)2 - y2]

= y(x + 2 + y)(x + 2 - y)

c) x2 + y2 + xz + yz + 2xy

= (x2 + 2xy + y2) + (xz + yz)

= (x + y)2 + z(x + y)

= (x + y)(x + y + z)

d) x3 + 3x2 – 3x – 1

= (x3 - 1) + (3x2 - 3x)

= (x - 1)(x2 + x + z) + 3x(x - 1)

= (x - 1)(x2 + 4x + 1)

10 tháng 7 2018

a ) 

\(xy-3x+2y-6\)

\(=\left(xy+2y\right)-3x-6\)

\(=y\left(x+2\right)-3\left(x+2\right)\)

\(=\left(y-3\right)\left(x+2\right)\)

b ) 

\(x^2y+4xy+4y-y^3\)

\(=y\left(x^2+4x+4-y^2\right)\)

\(=y\left[\left(x+2\right)^2-y^2\right]\)

\(=y\left(x+2-y\right)\left(x+2+y\right)\)

c ) 

\(x^2+y^2+xz+yz+2xy\)

\(=\left(x+y\right)^2+z\left(x+y\right)\)

\(=\left(x+y\right)\left(x+y+z\right)\)