Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(x^4+2x^3+x^2=\left(x^2\right)^2+2.x^2.x+x^2=\left(x^2+x\right)^2\)
b) \(x^3-x+3x^2y+3xy^2+y^3-y=x^3+3x^2y+3xy^2+y^3-x-y\)
\(=\left(x-y\right)^3-\left(x+y\right)\)
c) \(5x^2-10xy+5y^2-20z^2=\left(\sqrt{5}x-\sqrt{5}y\right)^2-20z^2\)
Câu b :
\(x^3-x+3x^2y+3xy^2+y^3-y\)
\(=\left(x^3+3x^2y+3xy^2+y^3\right)-\left(x+y\right)\)
\(=\left(x+y\right)^3-\left(x+y\right)=\left(x+y\right)\left[\left(x+y\right)^2-1\right]\)
Câu c :
\(5x^2-10xy+5y^2-20z^2\)
\(=5\left(x^2-2xy+y^2\right)-20z^2\)
\(=5\left(x-y\right)^2-20z^2\)
\(=5\left[\left(x-y\right)^2-4z^2\right]\)
\(=5\left(x-y+2z\right)\left(x-y-2z\right)\)
\(a,14x^2y-21xy^2+28x^2y^2=7xy\left(x-3y+4xy\right)\\ b,x\left(x+y\right)-5x-5y=x\left(x+y\right)-5\left(x+y\right)=\left(x+y\right)\left(x-5\right)\\ c,10x\left(x-y\right)-8\left(y-x\right)=10x\left(x-y\right)+8\left(x-y\right)=\left(x-y\right)\left(10x+8\right)=2\left(x-y\right)\left(5x+4\right)\)
\(d,\left(3x+1\right)^2-\left(x+1\right)^2=\left(3x+1-x-1\right)\left(3x+1+x+1\right)=2x\left(4x+2\right)=4x\left(2x+1\right)\)\(e,x^3+y^3+z^3-3xyz=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)+3xyz-3xyz=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\)
Câu 2 nha
\(a,x^4+2x^3+x^2\)
\(=x^2\left(x^2+2x+1\right)\)
\(=x^2\left(x+1\right)^2\)
\(c,x^2-x+3x^2y+3xy^2+y^3-y\)
\(=\left(x^3+3x^2y+3xy^2+y^3\right)-\left(x+y\right)\)
\(=\left(x+y\right)^3-\left(x+y\right)\)
\(=\left(x+y\right)\left(x^2+2xy+y^2-1\right)\)
a, \(x^2-x-y^2-y\)
\(=\left(x-y\right)\left(x+y\right)-\left(x+y\right)\)
\(=\left(x+1\right)\left(x-y-1\right)\)
b, \(a^3-a^2x-ay+xy\)
\(=a^2\left(a-x\right)-y\left(a-x\right)=\left(a^2-y\right)\left(a-x\right)\)
c, sai đề?
d, \(x^3-x+3x^2y+3xy^2+y^3-y\)
\(=\left(x+y\right)^3-\left(x+y\right)\)
\(=\left(x+y\right)\left[\left(x+y\right)^2-1\right]\)
\(=\left(x+y\right)\left(x+y-1\right)\left(x+y+1\right)\)
a ) \(x^2-x-y^2-y=\left(x^2-x\right)-\left(y^2+y\right)=x\left(x-1\right)-y\left(y+1\right)\)
c ) \(5x^2-10xy+5y^2-20z^2\)
\(=5\left(x^2-2xy+y^2\right)-20z^2\)
\(=5\left(x-y\right)^2-20z^2\)
\(=5\left[\left(x-y\right)^2-4z^2\right]\)
\(=5\left(x-y+2z\right)\left(x-y-2z\right)\)
d ) \(x^3-x+3x^2y+3xy^2+y^3-y=\left(x^3+3x^2y+3xy^2+y^3\right)-\left(x+y\right)\)
\(=\left(x+y\right)^3-\left(x+y\right)\)
\(=\left(x+y\right)\left[\left(x+y\right)^2-1\right]\)
1/a ) = (x+y)3 -(x+y)
= (x+y)[(x+y)2+1]
c) = 5(x2-xy+y2)-20z2
=5(x-y)2-20z2
= 5 [ (x-y)2- 4z2 ]
=5(x-y-4z)(x-y+4z)
Bài 1:
a) x3-x+3x2y+3xy2+y3-y
=x3+2x2y-x2+xy2-xy+x2y+2xy2-xy+y3-y2+x2+2xy-x+y2-y
=x(x2+2xy-x+y2-y)+y(x2+2xy-x+y2-y)+(x2+2xy-x+y2-y)
=(x2+2xy-x+y2-y)(x+y+1)
=[x(x+y-1)+y(x+y-1)](x+y+1)
=(x+y-1)(x+y)(x+y+1)
c) 5x2-10xy+5y2-20z2
=-5(2xy-y2+4z2-2)
Bài 2:
5x(x-1)=x-1
=>5x2-6x+1=0
=>5x2-x-5x+1
=>x(5x-1)-(5x-1)
=>(x-1)(5x-1)=0
=>x=1 hoặc x=1/5
b) 2(x+5)-x2-5x=0
=>2(x+5)-x(x+5)=0
=>(2-x)(x+5)=0
=>x=2 hoặc x=-5
1. C. \(16x^2\left(x-y\right)\)\(-10y\left(y-1\right)\)\(=-2\left(y-x\right)\)\(\left(8x^2+5y\right)\)
2. C. \(\left(x-y\right)\left(x-y-3\right)\)
3. D. \(\left(x-2\right)\left(x+1\right)\)
4. C. \(y\left(x-2\right)\)\(5x\left(x-3\right)\)
5. D. \(3\left(x-2y\right)\)
1. Trong các kết quả sau kết quả nào sai
A. -17x^3y-34x^2y^2+51xy^3=17xy(x^2+2xy-3y^2)
B. x(y-1) +3(y-1)= -(1-y)(x+3)
C. 16x^2(x-y)-10y(y-1)=-2(y-x)(8x^2+5y)
2. Đa thức (x-y)^2+3(y-x) được phân tích thành nhân tử là:
A. (x+y)(x-y+3)
B. (x-y)(2x-2y+3)
C. (x-y)(x-y-3)
D. Cả 3 câu đều sai
3. Kết quả phân tích đa thức x(x-2)+(x-2) thành nhân tử
A. (x-2)x
B. (x-2)^2.x
C. x(2x-4)
D. (x-2)(x+1)
4. Kết quả phân tích 5x^2(xy-2y)-15x(xy-2y) thành nhân tử
A. (xy-2y)(5x^2-15x^2)
B. y(x-2)(5x^2-15x^2)
C. y(x-2)5x(x-3)
D. (xy-2y)5x(x-3)
5. Kết quả phân tích đa thức 3x-6y thành nhân tử là
A. 3(x-6y)
B. 3(3x-y)
C. 3(3x-2y)
D. 3(x-2y)
1)
a) (x+y)3-(x+y)= (x+y)(x+y-1)
b) xem lại đề câu B nha bạn
2)
a3+3a2b+3ab2+b3+c3-3a2b-3ab2-3abc=0
(a+b)3+c3-3ab(a+b+c)=0
(a+b+c)(a2+2ab+b2-ac-bc+c2)-3ab(a+b+c)=0
(a+b+c)(a2+b2+c2-xy-yz-xz)=0
Suy ra: a3+b3+c3=3abc
1. a) = (x+y)3 -(x+y) =(x+y)((x+y)2 -1)
= (x+y)(x+y+1)(x+y-1)
b) = 5(( x-y)2 - 4z2)
= 5( x-y +2z)(x-y-2z)
2. áp dụng ( a+b+c)3 = .....rồi biến đổi
a) (x^2+2xy+y^2)-9=(x+y)^2-9=(x+y-3)(x+y+3)
b) 5(x^2-2xy+y^2-4z^2)=5[(x-y)^2-4z^2]=5[(x-y-2z)(x-y+2z)
c)x^2-2x-5x+10=x(x-2)-5(x-2)=(x-5)(x-2)
d)2x^2-4x-3x+6=2x(x-2)-3(x-2)=(2x-3)(x-2)
a) \(x^2-x-y^2-y\)
\(=\left(x^2-y^2\right)-\left(x+y\right)\)
\(=\left(x-y\right)\left(x+y\right)-\left(x+y\right)\)
\(=\left(x+y\right)\left(x-y-1\right)\)
a) \(^{x^2-x-y^2-y=\left(x^2-y^2\right)-\left(x+y\right)=\left(x-y\right)\left(x+y\right)-\left(x+y\right)=\left(x+y\right)\left(x-y-1\right)}\)
b)\(a^3-a^2x-ay=a\left(a^2-a.x-y\right)\)
c)\(5x^2-10xy+5y-20z^2=-20z^2+\left(5-10x\right)y+5x^2 \)
\(=-5\left(4z^2+2xy-y-x^2\right)\)
d)\(x^3-x+3x^2y+3xy^2+y^3-y\)
\(=\left(x^3+3xy^2+3x^2y+y^3\right)-\left(x+y\right)\)
\(=\left(x+y\right)^3-\left(x+y\right)\)
\(=\left(x+y\right)\left[\left(x+y\right)^2-1\right]=\left(x+y\right)\left(x+y-1\right)\left(x+y+1\right)\)