K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Ta có: \(2\left(x-1\right)^3-5\left(x-1\right)^2-\left(x-1\right)\)

\(=\left(x-1\right)\left[2\left(x-1\right)^2-5\left(x-1\right)-1\right]\)

\(=\left(x-1\right)\left(2x^2-4x+2-5x+5-1\right)\)

\(=\left(x-1\right)\left(2x^2-9x+6\right)\)

b: Ta có: \(x\left(y-x\right)^3-y\left(x-y\right)^2+xy\left(x-y\right)\)

\(=-x\left(x-y\right)^3-y\left(x-y\right)^2+xy\left(x-y\right)\)

\(=\left(x-y\right)\left[-x\left(x-y\right)^2-y\left(x-y\right)+xy\right]\)

\(=\left(x-y\right)\left[-x^3+2x^2y-xy^2-xy+y^2+xy\right]\)

\(=\left(x-y\right)\left(-x^3+2x^2y-xy^2+y^2\right)\)

30 tháng 8 2021

a) \(2\left(x-1\right)^3-5\left(x-1\right)^2-\left(x-1\right)=\left(x-1\right)\left[2\left(x-1\right)^2-5\left(x-1\right)-1\right]=\left(x-1\right)\left(2x^2-4x+2-5x+5-1\right)=\left(x-1\right)\left(2x^2-9x+6\right)\)

b) \(x\left(y-x\right)^3-y\left(x-y\right)^2+xy\left(x-y\right)=\left(x-y\right)\left[-x\left(x-y\right)^2-y\left(x-y\right)+xy\right]=\left(x-y\right)\left(-x^3+2x^2y-xy^2-xy+y^2+xy\right)=\left(x-y\right)\left(-x^3+y^2+2x^2y-xy^2\right)\)

c) \(xy\left(x+y\right)-2x-2y=xy\left(x+y\right)-2\left(x+y\right)=\left(x+y\right)\left(xy-2\right)\)

d) \(x\left(x+y\right)^2-y\left(x+y\right)^2+y^2\left(x-y\right)=\left(x+y\right)^2\left(x-y\right)+y^2\left(x-y\right)=\left(x-y\right)\left(x^2+2xy+y^2+y^2\right)=\left(x-y\right)\left(x^2+2y^2+2xy\right)\)

1, Phân tích thành nhân tử: 8(x + y + z)^2 - (x + y)^3 - (y + z)^3 - (z + x)^32, a, Phân tích thành nhân tử: 2x^2y^2 + 2y^2z^2 + 2z^2x^2 - x^4 - y^4 - z^4b, Chứng minh rằng nếu x, y, x là ba cạnh của 1 tam giác thì A > 03, Cho x, y, x là độ dài 3 cạnh của một tam giác ABC. Chứng minh rằng nếu x, y, z thỏa mãn các đẳng thức sau thì tam giác ABC là tam giác đều:a, (x + y+ z)^2 = 3(xy + yz + zx)b, (x + y)(y + z)(z + x) = 8xyzc, (x -...
Đọc tiếp

1, Phân tích thành nhân tử: 8(x + y + z)^2 - (x + y)^3 - (y + z)^3 - (z + x)^3
2, 
a, Phân tích thành nhân tử: 2x^2y^2 + 2y^2z^2 + 2z^2x^2 - x^4 - y^4 - z^4
b, Chứng minh rằng nếu x, y, x là ba cạnh của 1 tam giác thì A > 0
3, Cho x, y, x là độ dài 3 cạnh của một tam giác ABC. Chứng minh rằng nếu x, y, z thỏa mãn các đẳng thức sau thì tam giác ABC là tam giác đều:
a, (x + y+ z)^2 = 3(xy + yz + zx)
b, (x + y)(y + z)(z + x) = 8xyz
c, (x - y)^2 + (y - z)^2 + (z - x)^2 = (x + y - 2z)^2 + (y + z - 2x)^2 + (z + x - 2y)^2
d, (1 + x/z)(1 + z/y)(1 + y/x) = 8
4,
a, Cho 3 số a, b, c thỏa mãn b < c; abc < 0; a + c = 0. Hãy so sánh (a + b - c)(b + c - a)(c + a -b) và (c - b)(b - a)(a - c)
b, Cho x, y, z, t là các số nguyên dương thỏa mãn x + z = y + t; xz 1 = yt. Chứng minh y = t và x, y, z là 3 số nguyên liên tiếp

5, Chứng minh rằng mọi x, y, z thuộc Z thì giá trị của các đa thức sau là 1 số chính phương
a, A = (x + y)(x + 2y)(x + 3y)(x + 4y) + y^4
b, B = (xy + yz + zx)^2 + (x + y + z)^2 . (x^2 + y^2 + z^2)

4
16 tháng 8 2017

SORY I'M I GRADE 6

3 tháng 5 2018

????????

22 tháng 5 2018

6 tháng 11 2016

1. C. \(16x^2\left(x-y\right)\)\(-10y\left(y-1\right)\)\(=-2\left(y-x\right)\)\(\left(8x^2+5y\right)\)

2. C. \(\left(x-y\right)\left(x-y-3\right)\)

3. D. \(\left(x-2\right)\left(x+1\right)\)

4. C. \(y\left(x-2\right)\)\(5x\left(x-3\right)\)

5. D. \(3\left(x-2y\right)\)

6 tháng 11 2016

1. Trong các kết quả sau kết quả nào sai

A. -17x^3y-34x^2y^2+51xy^3=17xy(x^2+2xy-3y^2)

B. x(y-1) +3(y-1)= -(1-y)(x+3)

C. 16x^2(x-y)-10y(y-1)=-2(y-x)(8x^2+5y)

2. Đa thức (x-y)^2+3(y-x) được phân tích thành nhân tử là:

A. (x+y)(x-y+3)

B. (x-y)(2x-2y+3)

C. (x-y)(x-y-3)

D. Cả 3 câu đều sai

3. Kết quả phân tích đa thức x(x-2)+(x-2) thành nhân tử

A. (x-2)x

B. (x-2)^2.x

C. x(2x-4)

D. (x-2)(x+1)

4. Kết quả phân tích 5x^2(xy-2y)-15x(xy-2y) thành nhân tử

A. (xy-2y)(5x^2-15x^2)

B. y(x-2)(5x^2-15x^2)

C. y(x-2)5x(x-3)

D. (xy-2y)5x(x-3)

5. Kết quả phân tích đa thức 3x-6y thành nhân tử là

A. 3(x-6y)

B. 3(3x-y)

C. 3(3x-2y)

D. 3(x-2y)

25 tháng 7 2015

Ta có: x2 + y2 - x2y2 + xy - x - y

       = (x- x2y2) + (y2 - y) + (xy - x)

       = - x2(y- 1) + y(y - 1) + x(y - 1)

       = - x2(y + 1)(y - 1) + (y - 1)(x + y)

       = (y - 1)(x + y - x2y - x2)

       = (y - 1)[- (x2 - x) - (x2y - y)]

       = - (y - 1)[x(x - 1) + y(x- 1)]

       = - (y - 1)[x(x - 1) + y(x + 1)(x - 1)]

       = - (y - 1)(x - 1)[x + y(x + 1)]

       = - (y - 1)(x - 1)(x + xy +y)        

Ta có: x2 + y2 - x2y2 + xy - x - y

       = (x- x2y2) + (y2 - y) + (xy - x)

       = - x2(y- 1) + y(y - 1) + x(y - 1)

       = - x2(y + 1)(y - 1) + (y - 1)(x + y)

       = (y - 1)(x + y - x2y - x2)

       = (y - 1)[- (x2 - x) - (x2y - y)]

       = - (y - 1)[x(x - 1) + y(x- 1)]

       = - (y - 1)[x(x - 1) + y(x + 1)(x - 1)]

       = - (y - 1)(x - 1)[x + y(x + 1)]

       = - (y - 1)(x - 1)(x + xy +y)        

Ai trên 10 điểm hỏi đáp thì mình nha mình đang cần gấp chỉ còn 59 điểm là tròn rồi mong các bạn hỗ trợ mình sẽ đền bù xứng đáng

18 tháng 6 2016

a) = (x + 3)2 - y2 = (x + 3 - y)(x + 3 + y)

b) = x2(x - 3) -4(x - 3) = (x - 3)(x2 - 4) = (x - 3)(x - 2)(x + 2)

c) = 3x(x - y) - 5(x - y) = (x - y)(3x - y)

d) Nhầm đề. tui sửa lại x3 + y3 + 2x2 - 2xy + 2y2

= x3 + y3 + 2(x2 - xy + y2) = (x + y)(x2 - xy + y2) + 2(x2 - xy + y2) = (x2 - xy + y2)(x + y + 2)

e) = x4 - x3 - x3 + x2 - x2 + x + x - 1 = x3(x - 1) - x2(x - 1) - x(x - 1) + x - 1 = (x - 1)(x3 - x2 - x + 1) = (x - 1)(x - 1)(x2 - 1) = (x - 1)3(x + 1)

f) = x3 - 3x2 - x2 + 3x + 9x - 27 = x2(x - 3) - x(x - 3) + 9(x - 3) = (x-3)(x2 - x + 9)

g) chắc là 3xyz 

= x2y + xy2 + y2z + yz2 + x2z + xz2 + 3xyz = x2y + xy2 + xyz + y2z + yz2 + xyz + x2z + xz2 + xyz = (x + y + z)(xy + yz + xz)

h) = 23 -(3x)3 = (2 - 3x)(4 + 6x + 9x2)

i) = (x + y - x + y)(x + y + x - y) = 2y*2x = 4xy

k) = (x3 - y3)(x3 + y3) = (x - y)(x2 + xy +y2)(x + y)(x2 - xy +y2).

1 tháng 8 2021

a) \(=2\left(x-y\right)-\left(x^2-2xy+y^2\right)\)

\(=2\left(x-y\right)-\left(x-y\right)^2\)

\(=\left(x-y\right)\left(2-x+y\right)\)

1 tháng 8 2021

b) \(x^3-x+3x^2y+3xy^2+y^3-y\)

\(=\left(x^3+y^3\right)+\left(3x^2+3xy^2\right)-\left(x+y\right)\)

\(=\left(x+y\right)\left(x^2-xy+y^2\right)+3xy\left(x+y\right)-\left(x+y\right)\)

\(=\left(x+y\right)\left(x^2-xy+y^2+3xy-1\right)\)

\(=\left(x+y\right)\left(x^2+y^2+2xy-1\right)\)

17 tháng 7 2023

1) \(2\left(x-1\right)^3-\left(x-1\right)=\left(x-1\right)\left(2\left(x-1\right)^2-1\right)\)

2) \(y\left(x-2y\right)^2+xy^2\left(2y-x\right)=\left(2y-x\right)\left(2\left(2y-x\right)+1\right)=\left(2y-x\right)\left(4y-2x+1\right)\)

3) \(xy\left(x+y\right)-x-y=xy\left(x+y\right)-\left(x+y\right)=\left(x+y\right)\left(xy-1\right)\) (xem lại đề sửa -2x thành -x mới đúng)

4) \(xy\left(x-3y\right)-2x+6y=xy\left(x-3y\right)-2\left(x-3y\right)=\left(x-3y\right)\left(xy-2\right)\)

1 tháng 11 2018

mình cần gấp nhé mọi người 13 giờ mk đi học rồi

15 tháng 11 2022

Bài 1:

b: =x^2-10x+x-10

=(x-10)(x+1)

c: \(=2x^2-5x+2x-5=\left(2x-5\right)\left(x+1\right)\)

d: \(=3x^2+5x-3x-5=\left(3x+5\right)\left(x-1\right)\)

e: \(=\left(2x+y\right)^3\)