K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 12 2018

\(a,x^3+y^3+z^3-3xyz\)

\(=\left(x+y+z\right)\left[\left(x+y\right)^2-\left(x+y\right)z+z^2\right]-3xy\left(x+y+z\right)\)

\(=\left(x+y+z\right)\left(x^2+y^2+z^2+2xy-xz-yz\right)-3xy\left(x+y+z\right)\)

\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-xz\right)\)

28 tháng 12 2018

b) \(f\left(x\right)=12x^3-32x^2+25x-6\)

Thấy \(x=\frac{3}{2}\) là một nghiệm.Vậy đa thức có chứa nhân tử \(\left(x-\frac{3}{2}\right)\)

Ta có: \(f\left(x\right)=\left(x-\frac{3}{2}\right)\left(\frac{12x^3-32x^2+25x-6}{x-\frac{3}{2}}\right)\)

\(=\left(x-\frac{3}{2}\right)\left(12x^2-14x+4\right)\)

\(=\left(x-\frac{3}{2}\right)\left[\left(12x^2-6x\right)-\left(8x-4\right)\right]\)

\(=\left(x-\frac{3}{2}\right)\left(x-\frac{2}{3}\right)\left(12x-6\right)\)

\(=12\left(x-\frac{3}{2}\right)\left(x-\frac{2}{3}\right)\left(x-\frac{1}{2}\right)\)

12 tháng 8 2016

bài a) bn trên đã dẫn link cho bn r

bài b)

Đặt x-y=a;y-z=b;z-x=c 

\(=>a+b+c=x-y+y-z+z-x=0\)

\(\left(x-y\right)^3+\left(y-z\right)^3+\left(z-x\right)^3=a^3+b^3+c^3\)

Theo câu a)\(a^3+b^3+c^3-3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)=0\) (do a+b+c=0)

\(=>a^3+b^3+c^3=3abc=>\left(x-y\right)^3+\left(y-z\right)^3+\left(z-x\right)^3=3\left(x-y\right)\left(y-z\right)\left(z-x\right)\)

a) Ta có :

\(a^3+b^3+c^3-3abc\)

\(\Rightarrow\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc\)

\(\Rightarrow\left(a+b+c\right)\left[\left(a+b^2\right)-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)\)

\(\Rightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)

P/s tham khảo nha

hok tốt

25 tháng 10 2018

1) a) \(x^3-2x^2y+xy^2-25x=x\left(x^2-2xy+y^2-25\right)\)

   \(=x\left[\left(x-y\right)^2-5^2\right]=x\left(x-y-5\right)\left(x-y+5\right)\)

b)\(x^2-y^2-2x-2y=\left(x^2-2x+1\right)-\left(y^2+2y+1\right)=\left(x-1\right)^2-\left(y+1\right)^2\)

\(=\left(x-1-y-1\right)\left(x-y+y+1\right)=\left(x-y-2\right)\left(x+1\right)\)

25 tháng 10 2018

Câu c sửa mũ 2 thành mũ 4 giúp mk nhé

1 tháng 11 2016

a) Ta có:
x³ + y³ + z³ - 3xyz = (x+y)³ - 3xy(x-y) + z³ - 3xyz
= [(x+y)³ + z³] - 3xy(x+y+z)
= (x+y+z)³ - 3z(x+y)(x+y+z) - 3xy(x-y-z)
= (x+y+z)[(x+y+z)² - 3z(x+y) - 3xy]
= (x+y+z)(x² + y² + z² + 2xy + 2xz + 2yz - 3xz - 3yz - 3xy)
= (x+y+z)(x² + y² + z² - xy - xz - yz).

 

 

1 tháng 11 2016

giải giùm mình bài b luôn đi

 

 

 

28 tháng 9 2016

\(\left(x+y\right)^3-3xy\left(x+y\right)+z^3-3xyz\)

cộng ((x+y)^3 + z^3) vào 1 nhóm, -3xy(x+y)-3xyz vào 1 nhóm dc

\(\left(x+y+z\right)\left(\left(x+y\right)^2-\left(x+y\right)z+z^2\right)-3yz\left(x+y+z\right)\)xuất hiện nhân tử chung x+y+z

\(\left(x+y+z\right)\left(x^2+y^2+2xy-xz-yz+z^2-3xy\right)\)

Kết quả: \(\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-xz\right)\)

3 tháng 9 2018

\(x^3+y^3+z^3-3xyz\)

\(=\left(x+y\right)^3-3xy\left(x+y\right)+z^3-3xyz\)

\(=\left(x+y+z\right)\left[\left(x+y\right)^2-\left(x+y\right)z+z^2\right]-3xy\left(x+y+z\right)\)

\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\)

20 tháng 2 2017

\(=\left(x^3+y^3\right)+z^3-3xyz=\left(x+y\right)^3+z^3-3xy\left(x+y\right)-3xyz\)

\(=\left(x+y+z\right)^3-3z\left(x+y\right)\left(x+y+z\right)-3xy\left(x+y+z\right)\)

\(=\left(x+y+z\right)\left(\left(x+y+z\right)^2-3z\left(x+y\right)-3xy\right)\)

\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy+yz+zx\right)\)

1 tháng 10 2017

\(x^3+y^3+z^3-3xyz=\left(x^3+y^3\right)-3xyz+z^3\)

                                          \(=\left(x+y\right)^3-3xy.\left(x+y\right)-3xyz+z^3\)

                                            \(=\left[\left(x+y\right)^3+z^3\right]-\left[3xy.\left(x+y\right)+3xyz\right]\)

                                             \(=\left(x+y+z\right).\left(x^2+2xy+y^2-zx-zy+z^2\right)-3xy.\left(x+y+z\right)\)

                                               \(=\left(x+y+z\right).\left(x^2+y^2+z^2-zx-zy+2zy-3xy\right)\)

                                                 \(=\left(x+y+z\right).\left(x^2+z^2+y^2-zx-zy-xy\right)\)

Vừa làm xong . Chúc bạn học tốt !

1 tháng 10 2017

\(=\left(x+y\right)^3+z^z-3x^2y-3xy^2-3xyz\)

\(=\left(x+y+z\right)\left[\left(x+y\right)^2-\left(x+y\right)z+z^2\right]-3xy\left(x+y+z\right)\)

\(=\left(x+y+z\right)\left(x^2+2xy+y^2-xz-yz+z^2-3xy\right)\)

\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-xz\right)\)

10 tháng 6 2018

a, x^4 - 5x^2 + 4

= x^4 - 4x^2- x+ 4

= x^2  . (x^2 - 4) - (x^2 - 4)

= (x^2 - 4) . (x^2 - 1)

= (x - 2) . (x + 2) . (x - 1) . (x + 1)

3 tháng 9 2018

\(x^3+y^3+z^3-3xyz\)

\(=\left(x+y\right)^3-3xy\left(x+y\right)+z^3-3xyz\)

\(=\left(x+y+z\right)\left[\left(x+y\right)^2-\left(x+y\right)z+z^2\right]-3xy\left(x+y+z\right)\)

\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\)