K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 8 2017
 

bÀI LÀM

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)

b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)

c)Đặt x-y=a;y-z=b;z-x=c

a+b+c=x-y-z+z-x=o

đưa về như bài b

d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung

e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)

=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)

22 tháng 8 2017

bạn làm gì thế ?

22 tháng 8 2017

a)\(\left(x+y+z\right)\left(x^2-xy+y^2\right)\)

b),c) sai đề

28 tháng 9 2016

Bài 1 :

a) xy(x+y)+yz(y+z)+xz(x+z)+2xyz 

= xy(x + y) + yz(y + z) + xyz + xz(x + z) + xyz 

= xy(x + y) + yz(y + z + x) + xz(x + z + y) 

= xy(x + y) + z(x + y + z)(y + x) 

= (x + y)(xy + zx + zy + z²) 

= (x + y)[x(y + z) + z(y + z)] 

= (x + y)(y + z)(z + x)

b) \(x^3-x+3x^2y+3xy^2+y^3-x-y\)
\(=\left(x^3+3x^2y+3xy^2+y^3\right)-\left(x+y\right)\)

\(=\left(x+y\right)^3-\left(x+y\right)\)

\(=\left(x+y\right)\left[\left(x+y\right)^2-1\right]\)

\(=\left(x+y\right)\left(x+y-1\right)\left(x+y+1\right)\)

28 tháng 9 2016

Đã có kết quả

Bài 1,chữa phần a

 xy(x+y)+yz(y+z)+xz(x+z)+2xyz

=[xy(x+y)+xyz]+[yz(y+z)+xyz]+xz(x+z)

=xy(x+y+z)+yz(x+y+z)+xz(x+z)

=y(x+y+z)(x+z)+xz(x+z)

=(x+z)(xy+y2+yz+xz)

=(x+z)(x+y)(y+z)

Chữa phần b

x3-x+3x2y+3xy2+y3-y

=(x+y)(x+y-1)(x+y+1)

Bài2

a3+b3+c3=(a+b)3-3ab(a+b)+c3=-c3-3ab(-c)+c3=3abc

Ai làm đúng như này ớ sẽ k

11 tháng 10 2015

a)=x2-5x-2x+10=x(x-5)-2(x-5)=(x-5)(x-2)

b)=4x2-4x+x-1=4x(x-1)+(x-1)=(x-1)(4x+1)

c)=x2-4x+3x-12=x(x-4)+3(x-4)=(x-4)(x+3)

 

 

 

9 tháng 8 2015

trong sách nâng cao và phát triển có đó 

24 tháng 9 2020

a) x3 + x2y - x2z - xyz

= ( x3 + x2y ) - ( x2z + xyz )

= x2( x + y ) + xz( x + y )

= ( x + y )( x2 + xz )

= x( x + y )( x + z )

b) x2 - y2 + 6x + 9

= ( x2 + 6x + 9 ) - y2

= ( x + 3 )2 - y2

= ( x - y + 3 )( x + y + 3 )

c) x2 - 4xy - x + 2y + 4y2

= ( x2 - 4xy + 4y2 ) - ( x - 2y )

= ( x - 2y )2 - ( x - 2y )

= ( x - 2y )( x - 2y - 1 )

d) 18x3 - 12x2 + 3x - 2

= ( 18x3 - 12x2 ) + ( 3x - 2 )

= 6x2( 3x - 2 ) + ( 3x - 2 )

= ( 3x - 2 )( 6x2 + 1 )

e) a2 + 2ab + b2 - c2 + 2cd - d2

= ( a2 + 2ab + b2 ) - ( c2 - 2cd + d2 ) 

= ( a + b )2 - ( c - d )2

= ( a + b - c + d )( a + b + c - d )

f) xz - yz - x2 + 2xy - y2

= z( x - y ) - ( x2 - 2xy + y2 )

= z( x - y ) - ( x - y )2

= ( x - y )( z - x + y )

24 tháng 9 2020

a) x3 + x2y - x2z - xyz

= ( x3 + x2y ) - ( x2z + xyz )

= x2( x + y ) + xz( x + y )

= ( x + y )( x2 + xz )

= x( x + y )( x + z )

b) x2 - y2 + 6x + 9

= ( x2 + 6x + 9 ) - y2

= ( x + 3 )2 - y2

= ( x - y + 3 )( x + y + 3 )

c) x2 - 4xy - x + 2y + 4y2

= ( x2 - 4xy + 4y2 ) - ( x - 2y )

= ( x - 2y )2 - ( x - 2y )

= ( x - 2y )( x - 2y - 1 )

d) 18x3 - 12x2 + 3x - 2

= ( 18x3 - 12x2 ) + ( 3x - 2 )

= 6x2( 3x - 2 ) + ( 3x - 2 )

= ( 3x - 2 )( 6x2 + 1 )

e) a2 + 2ab + b2 - c2 + 2cd - d2

= ( a2 + 2ab + b2 ) - ( c2 - 2cd + d2 ) 

= ( a + b )2 - ( c - d )2

= ( a + b - c + d )( a + b + c - d )

f) xz - yz - x2 + 2xy - y2

= z( x - y ) - ( x2 - 2xy + y2 )

= z( x - y ) - ( x - y )2

= ( x - y )( z - x + y )