Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
1/22 < 1/1.2 = 1/1 - 1/2
1/32 < 1/2.3 = 1/2 - 1/3
..........
1/1002 < 1/99.100 = 1/99 - 1/100
=> 1/22+1/32+1/42+......+1/1002 < 1/1 - 1/2 + 1/2 - 1/3 + .... + 1/99 - 1/100 = 1 - 1/100 < 1
=> 1/22+1/32+1/42+......+1/1002 < 1 ( dpcm )
5^6+5^7+5^8
=5^6.(1+5+5^2)
=5^6.31 chia hết cho 31
7^6+7^5-7^4
=7^4.(7^2+7-1)
=7^4.55 chia hết cho 11
BÀI 2:
a) \(5^6+5^7+5^8=5^6\left(1+5+5^2\right)=5^6.31\) \(⋮\)\(31\)
b) \(7^6+7^5-7^4=7^4.\left(7^2+7-1\right)=7^4.55\)\(⋮\)\(11\)
c) \(2^3+2^4+2^5=2^3.\left(1+2+2^2\right)=2^3.7\)\(⋮\)\(7\)
d) mk chỉnh đề
\(1+2+2^2+2^3+...+2^{59}\)
\(=\left(1+2\right)+\left(2^2+2^3\right)+...+\left(2^{58}+2^{59}\right)\)
\(=\left(1+2\right)+2^2\left(1+2\right)+...+2^{58}\left(1+2\right)\)
\(=\left(1+2\right)\left(1+2^2+...+2^{58}\right)\)
\(=3\left(1+2^2+...+2^{58}\right)\)\(⋮\)\(3\)
1) \(\frac{1}{9}\times27^n=3^n\)
\(\Rightarrow\frac{1}{3^2}\times\left(3^3\right)^n=3^n\)
\(\Rightarrow3^{-2}\times3^{3n}=3^n\)
\(\Rightarrow3^{-2+3n}=3^n\)
\(\Rightarrow-2+3n=n\)
\(\Rightarrow2n=2\)
\(\Rightarrow n=1\)
2) \(32< 2^n< 128\)
\(\Rightarrow2^5< 2^n< 2^7\)
\(\Rightarrow5< n< 7\)
\(\Rightarrow n=6\)
3) \(2\times16\ge2^n>4\)
\(\Rightarrow32\ge2^n>4\)
\(\Rightarrow2^5\ge2^n>2^2\)
\(\Rightarrow\)\(5\ge n>2\)
\(\Rightarrow n\in\left\{5;4;3\right\}\)
bài dễ thế này mà bạn k làm đc ư? mình xin lỗi nhé, nhưng bạn học hanh kiểu gì thế?
P = 1/52 + 1/62 + ... + 1/992
P > 1/5.6 + 1/6.7 + ... + 1/99.100
P > 1/5 - 1/6 + 1/6 - 1/7 + ... + 1/99 - 1/100
P > 1/5 - 1/100
P > 20/100 - 1/100
P > 19/100 > 18/100 = 9/50 (1)
P < 1/4.5 + 1/5.6 + ... + 1/98.99
P < 1/4 - 1/5 + 1/5 - 1/6 + ... + 1/98 - 1/99
P < 1/4 - 1/99 < 1/4 (2)
Từ (1) và (2) => 9/50 < P < 1/4