K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
28 tháng 9 2023

Bước 1: Sắp xếp mẫu số liệu theo thứ tự không giảm: 23 23 25 26

Bước 2: Mẫu số liệu có 4 số liệu nên trung vị của mẫu số liệu là: \({M_e} = \frac{{23 + 25}}{2} = 24\left( {^oC} \right)\)

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

a)

Hà Nội:

Số lớn nhất là 35, số nhỏ nhất là 23

R=35-23=12

Điện Biên:

Số lớn nhất là 28, số nhỏ nhất là 16

R=28-16=12

Khoảng biến thiên về nhiệt độ của Hà Nội và Điện Biên bằng nhau.

b) Số 16 làm cho khoảng biến thiên về nhiệt độ tại Điện Biên lớn hơn.

c)

Hà Nội:      23 25 28 28 32 33 35.

\({Q_2} = 28\)

\({Q_1} = 25\)

\({Q_3} = 33\)

\({Q_3} - {Q_1} = 33 - 25 = 8\)

Điện Biên: 16 24 26 26 26 27 28.

\({Q_2} = 26\)

\({Q_1} = 24\)

\({Q_3} = 27\)

\({Q_3} - {Q_1} = 27 - 24 = 3\)

Có thể dùng hiệu này để đo độ phân tán.

Chú ý

\({Q_3} - {Q_1}\) chính là khoảng tứ phân vị.

31 tháng 3 2017

Số trung bình cộng của các số liệu thống kê đã cho là 22,5

17 tháng 6 2017

Chọn B.

Số trung bình của dãy số liệu thống kê đã cho là:

Đề kiểm tra 15 phút Đại số 10 Chương 5 có đáp án (Đề 1)

15 tháng 2 2018

Chọn C.

Sản lượng trung bình của 40 thửa ruộng là:

Đề kiểm tra 15 phút Đại số 10 Chương 5 có đáp án (Đề 2)

Phương sai là

Đề kiểm tra 15 phút Đại số 10 Chương 5 có đáp án (Đề 2)

HQ
Hà Quang Minh
Giáo viên
28 tháng 9 2023

a) Số trung bình cộng của mẫu số liệu trên là: \(\overline X  = \frac{{165 + 155 + 171 + 167 + 159 + 175 + 165 + 160 + 158}}{9} = 163,9\)

b) Mẫu số liệu theo thứ tự không giảm là:

155 158 159 160 165 165 167 171 175

Mẫu số liệu trên có 9 số liệu nên số trung vị là: \({M_e} = 165\)

c) Ta có bàng tần số

155

158

159

160

165

167

171

175

1

1

1

1

2

1

1

1

 

Vậy mốt của mẫu số liệu là: \({M_o} = 165\)

d) Mẫu số liệu theo thứ tự không giảm là:

                                                155 158 159 160 165 165 167 171 175           

 Mẫu số liệu trên có 9 số liệu nên số trung vị là: \({M_e} = 165\)

 Trung vi của dãy số 155 158 159 160 là: \({Q_1} = \frac{{158 + 159}}{2} = 158,5\)

 Trung vị của dãy số 165 167 171 175 là: \({Q_3} = \frac{{167 + 171}}{2} = 169\)

 Vậy \({Q_1} = 158,5\), \({Q_2} = 165\), \({Q_3} = 169\) 

HQ
Hà Quang Minh
Giáo viên
26 tháng 9 2023

a)

Số trung bình \(\overline x  = \frac{{8.1 + 19.10 + 20.19 + 21.17 + 22.3}}{{1 + 10 + 19 + 17 + 3}} = 20,02\)

+) Sắp xếp các giá trị theo thứ tự không giảm: \(8,\underbrace {19,...,19}_{10},\underbrace {20,...,20}_{19},\underbrace {21,...,21}_{17},22,22,22\)

Trung vị \({M_e} = \frac{1}{2}(20 + 20) = 20\)

+) Mốt \({M_o} = 20\)

b)

+) Tình độ lệch chuẩn:

Phương sai \({S^2} = \frac{1}{{50}}\left( {{8^2} + {{10.19}^2} + {{19.20}^2} + {{17.21}^2} + {{3.22}^2}} \right) - 20,{02^2} \approx 3,66\)

=> Độ lệch chuẩn \(S = \sqrt {{S^2}}  \approx 1,91\)

+) Khoảng biến thiên \(R = 22 - 8 = 14\)

+) Tứ phân vị: \({Q_1},{Q_2},{Q_3}\)

\({Q_2} = {M_e} = 20\)

\({Q_1}\) là trung vị của mẫu:  \(8,\underbrace {19,...,19}_{10},\underbrace {20,...,20}_{14}\). Do đó \({Q_1} = 20\)

\({Q_3}\) là trung vị của mẫu:  \(\underbrace {20,...,20}_5,\underbrace {21,...,21}_{17},22,22,22\). Do đó \({Q_3} = 21\)

+) x là giá trị ngoại lệ nếu \(x > 21 + 1,5(21 - 20) = 22,5\) hoặc \(x < 20 - 1,5.(21 - 10) = 18,5\).

Vậy có một giá trị ngoại lệ là 8.

12 tháng 7 2019

Trong dãy số liệu thống kê trên có 20 giá trị ( không phân biệt)  nên có tất cả 20 vận động viên tham gia chạy.

Vậy kích thước mẫu là 20

Chọn B.

Hai mẫu số liệu sau đây cho biết số lượng trường Trung học phổ thông ở mỗi tỉnh/ thành phố thuộc Đồng bằng sông Hồng và Đồng bằng sông Cửu Long năm 2017: Đồng bằng sông Hồng: $187$  $34$  $35$  $46$  $54$  $57$  $37$  $39$  $23$  $57$  $27$ Đồng bằng sông Cửu Long: $33$  $34$  $33$  $29$  $24$  $39$  $42$  $24$  $23$  $19$  $24$  $15$  $26$. (Theo tổng cục thống kê) a) Tính số trung bình,...
Đọc tiếp

Hai mẫu số liệu sau đây cho biết số lượng trường Trung học phổ thông ở mỗi tỉnh/ thành phố thuộc Đồng bằng sông Hồng và Đồng bằng sông Cửu Long năm 2017:

Đồng bằng sông Hồng:
$187$  $34$  $35$  $46$  $54$  $57$  $37$  $39$  $23$  $57$  $27$

Đồng bằng sông Cửu Long:
$33$  $34$  $33$  $29$  $24$  $39$  $42$  $24$  $23$  $19$  $24$  $15$  $26$.

(Theo tổng cục thống kê)

a) Tính số trung bình, trung vị, các tứ phân vị, mốt, khoảng biến thiên, khoảng tứ phân vị, độ lệch chuẩn cho mỗi mẫu số liệu trên.
b) Tại sao số trung bình của hai mẫu số liệu có sự sai khác nhiều trong khi trung vị thì không?
c) Tại sao khoảng biến thiên và độ lệch chuẩn của hai mẫu số liệu khác nhau nhiều trong khi khoảng tứ phân vị thì không?

 

1
13 tháng 3 2023

a) +) Mẫu số liệu đồng bằng sông Hồng:

Số trung bình của mẫu số liệu:

Hai mẫu số liệu sau đây cho biết số lượng trường Trung học phổ thông

Sắp xếp số liệu trên theo thứ tự không giảm ta được:

23; 27; 34; 35; 37; 39; 46; 54; 57; 57; 187.

Vì n = 11 là số lẻ nên trung bị Q2 = 39.

Nửa số liệu bên trái có tứ phân vị thứ nhất là: Q= 34.

Nửa số liệu bên phải có tứ phân vị thứ ba là: Q3 = 57.

Khoảng tứ phân vị là:

ΔQ = Q3 – Q1 = 57 – 34 = 23.

Ta có giá trị lớn nhất của số  liệu là 187 và giá trị nhỏ nhất là 23. Khi đó khoảng biến thiên là: R = 187 – 23 = 164.

Theo quan sát số liệu, ta thấy giá trị 57 có tần số suất hiện nhiều nhất nên mốt là 57.

+) Mẫu số liệu đồng bằng sông Cửu Long:

Số trung bình của mẫu số liệu:

Hai mẫu số liệu sau đây cho biết số lượng trường Trung học phổ thông

Sắp xếp số liệu trên theo thứ tự không giảm ta được:

15; 19; 23; 24; 24; 24; 26; 29; 33; 33; 34; 39; 42.

Vì n = 13 là số lẻ nên trung vị Q2 = 26.

Nửa số liệu bên trái có tứ phân vị thứ nhất là: Q= (23 + 24):2 = 23,5.

Nửa số liệu bên phải có tứ phân vị thứ ba là: Q3 = (33 + 34):2 = 33,5.

Khoảng tứ phân vị là:

ΔQ = Q3 – Q1 = 33,5 – 23,5 = 10.

Ta có giá trị lớn nhất của số  liệu là 42 và giá trị nhỏ nhất là 15. Khi đó khoảng biến thiên là: R = 42 – 15 = 27.

Theo quan sát số liệu, ta thấy giá trị 24 có tần số suất hiện nhiều nhất nên mốt là 24.

b) Vì trong mẫu số liệu thứ nhất có giá trị bất thường là 187, giá trị này làm ảnh hưởng đến giá trị trung bình của mẫu số liệu một nên có sự sai khác nhiều hai số trung bình của hai mẫu số liệu còn trung vị thì không.

c) Vì trong mẫu số liệu thứ nhất có giá trị bất thường là 187, giá trị này là giá trị lớn nhất nên ảnh hưởng đến khoảng biến thiên của mẫu số liệu một. Trong khi đó, các giá trị của mẫu số liệu hai không có giá trị nào bất thường. Do đó khoảng biến thiên của hai mẫu số liệu có sự chênh lệch nhau.

Độ phân tán của mẫu số liệu một lớn hơn nhiều so với độ phân tán của mẫu số liệu hai. Do đó độ lệch chuẩn của hai số liệu sau có sự khác biệt.

Khoảng tứ phân vị là khoảng biến thiên của 50% số liệu chính giữa mà các giá trị chính giữa của hai mẫu số liệu không quá chênh lệch. Do đó khoảng tứ phân vị của hai mẫu số liệu không quá khác biệt.

 
HQ
Hà Quang Minh
Giáo viên
26 tháng 9 2023

a)

+) Số trung bình \(\overline x  = \frac{{6 + 8 + 3 + 4 + 5 + 6 + 7 + 2 + 4}}{9} = 5\)

+) phương sai hoặc \({S^2} = \frac{1}{9}\left( {{6^2} + {8^2} + ... + {4^2}} \right) - {5^2} = \frac{{10}}{3}\)

  => Độ lệch chuẩn \(S = \sqrt {\frac{{10}}{3}}  \approx 1,8\)

Sắp xếp mẫu số liệu theo thứ tự không giảm: 2; 3; 4; 4; 5; 6; 6; 7; 8.

+) Khoảng biến thiên: \(R = 8 - 2 = 6\)

Tứ phân vị: \({Q_1},{Q_2},{Q_3}\)

\({Q_2} = {M_e} = 5\)

\({Q_1}\) là trung vị của nửa số liệu 2; 3; 4; 4. Do đó \({Q_1} = 3,5\)

\({Q_3}\) là trung vị của nửa số liệu: 6; 6; 7; 8. Do đó \({Q_3} = 6,5\)

+) Khoảng tứ phân vị: \({\Delta _Q} = 6,5 - 3,5 = 3\)

+) x là giá trị ngoại lệ trong mẫu nếu \(x > 6,5 + 1,5.3 = 11\) hoặc \(x < 3,5 - 1,5.3 =  - 1\)

Vậy không có giá trị ngoại lệ trong mẫu số liệu trên.

b)

+) Số trung bình \(\overline x  = \frac{{13 + 37 + 64 + 12 + 26 + 43 + 29 + 23}}{8} = 30,875\)

+) phương sai hoặc \({S^2} = \frac{1}{8}\left( {{{13}^2} + {{37}^2} + ... + {{23}^2}} \right) - 30,{875^2} \approx 255,8\)

  => Độ lệch chuẩn \(S \approx 16\)

Sắp xếp mẫu số liệu theo thứ tự không giảm: 12; 13; 23; 26; 29; 37; 43; 64.

+) Khoảng biến thiên: \(R = 64 - 12 = 52\)

Tứ phân vị: \({Q_1},{Q_2},{Q_3}\)

\({Q_2} = {M_e} = 27,5\)

\({Q_1}\) là trung vị của nửa số liệu 12; 13; 23; 26. Do đó \({Q_1} = 18\)

\({Q_3}\) là trung vị của nửa số liệu: 29; 37; 43; 64. Do đó \({Q_3} = 40\)

+) Khoảng tứ phân vị: \({\Delta _Q} = 40 - 18 = 22\)

+) x là giá trị ngoại lệ trong mẫu nếu \(x > 40 + 1,5.22 = 73\) hoặc \(x < 18 - 1,5.22 =  - 15\)

Vậy không có giá trị ngoại lệ trong mẫu số liệu trên.